1,417 research outputs found

    Correcting for interplanetary scattering in velocity dispersion analysis of solar energetic particles

    Get PDF
    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA

    Supermagnetosonic jets behind a collisionless quasi-parallel shock

    Full text link
    The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.Comment: accepted to Phys. Rev. Lett. (Nov 5, 2009

    The universal functorial equivariant Lefschetz invariant

    Full text link
    We introduce the universal functorial equivariant Lefschetz invariant for endomorphisms of finite proper G-CW-complexes, where G is a discrete group. We use K_0 of the category of "phi-endomorphisms of finitely generated free RPi(G,X)-modules". We derive results about fixed points of equivariant endomorphisms of cocompact proper smooth G-manifolds.Comment: 33 pages; shortened version of the author's PhD thesis, supervised by Wolfgang Lueck, Westfaelische Wilhelms-Universitaet Muenster, 200

    Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida

    Get PDF
    Genetic modification of the flavonoid pathway has been used to produce novel colours and colour patterns in ornamental plants as well as to modify the nutritional and pharmaceutical properties of food crops. It has been suggested that co-ordinate control of multiple steps of the pathway with the help of regulatory genes would lead to a more predictable control of metabolic flux. Regulation of anthocyanin biosynthesis has been studied in a common ornamental plant, Gerbera hybrida (Asteraceae). An R2R3-type MYB factor, GMYB10, shares high sequence similarity and is phylogenetically grouped together with previously characterized regulators of anthocyanin pigmentation. Ectopic expression of GMYB10 leads to strongly enhanced accumulation of anthocyanin pigments as well as to an altered pigmentation pattern in transgenic gerbera plants. Anthocyanin analysis indicates that GMYB10 specifically induces cyanidin biosynthesis in undifferentiated callus and in vegetative tissues. Furthermore, in floral tissues enhanced pelargonidin production is detected. Microarray analysis using the gerbera 9K cDNA array revealed a highly predicted set of putative target genes for GMYB10 including new gene family members of both early and late biosynthetic genes of the flavonoid pathway. However, completely new candidate targets, such as a serine carboxypeptidase-like gene as well, as two new MYB domain factors, GMYB11 and GMYB12, whose exact function in phenylpropanoid biosynthesis is not clear yet, were also identified

    Distinct Metabolomic Profile Because of Gestational Diabetes and its Treatment Mode in Women with Overweight and Obesity

    Get PDF
    ObjectiveWhether the presence of gestational diabetes (GDM) and its treatment mode influence the serum metabolic profile in women with overweight or obesity was studied.MethodsThe serum metabolic profiles of 352 women with overweight or obesity participating in a motherā€infant clinical study were analyzed with a targeted NMR approach (at 35.1 median gestational weeks). GDM was diagnosed with a 2ā€hour 75ā€g oral glucose tolerance test.ResultsThe metabolomic profile of the women with GDM (nā€‰=ā€‰100) deviated from that of women without GDM (nā€‰=ā€‰252). Differences were seen in 70 lipid variables, particularly higher concentrations of very lowā€density lipoprotein particles and serum triglycerides were related to GDM. Furthermore, levels of branchedā€chain amino acids and glycoprotein acetylation, a marker of lowā€grade inflammation, were higher in women with GDM. Compared with women with GDM treated with diet only, the women treated with medication (nā€‰=ā€‰19) had higher concentrations of severalizes of VLDL particles and their components, leucine, and isoleucine, as well as glycoprotein acetylation.ConclusionsA clearly distinct metabolic profile was detected in GDM, which deviated even more if the patient was receiving medical treatment. This suggests a need for more intense followā€up and therapy for women with GDM during pregnancy and postpartum to reduce their longā€term adverse health risks.</p

    Rapid one-step biotinylation of biological and non-biological surfaces

    Get PDF
    We describe a rapid one-step method to biotinylate virtually any biological or non-biological surface. Contacting a solution of biotin-spacer-lipid constructs with a surface will form a coating within seconds on non-biological surfaces or within minutes on most biological membranes including membrane viruses. The resultant biotinylated surface can then be used to interact with avidinylated conjugates, beads, vesicles, surfaces or cells

    Correcting for interplanetary scattering in velocity dispersion analysis of solar energetic particles

    Get PDF
    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.</p

    Perinatal nutrition impacts on the functional development of the visual tract in infants

    Get PDF
    BACKGROUND AND OBJECTIVE: We investigated the associations of maternal diet and serum fatty acids during pregnancy and in early infancy on infantile neurodevelopment.METHODS: Pattern-reversal visual evoked potentials (pVEP) as depictors of central nervous system maturation were recorded from 56 children when they were 2 years old. Maternal nutrient intakes were calculated from food diaries and fish consumption from questionnaires collected during pregnancy. Serum phospholipid fatty acids were determined by gas chromatography in late pregnancy and from infants at 1 month of age.RESULTS: The children of the women who consumed fish three or more times per week during the last trimester of pregnancy had a higher pVEP component P100 amplitude for 60' (mean 23.4, SD 8.1) and 30' (mean 20.4, SD 6.7) of arcminute check sizes compared to those who consumed fish 0-2 times per week (mean 15.0, SD 4.8, pā€‰=ā€‰0.023, adjusted for birth weight and gender pā€‰=ā€‰0.058 and mean 13.4, SD 2.0, respectively, pā€‰=ā€‰0.028, adjusted pā€‰=ā€‰0.072). Maternal and child serum phospholipid fatty acids correlated with child pVEP measurements.CONCLUSION: The results of this small-scale study suggest that fish consumption during pregnancy and perinatal serum fatty acid status may associate with neurodevelopment within visual system during infancy.</p

    Solar interacting protons versus interplanetary protons in the core plus halo model of diffusive shock acceleration and stochastic re-acceleration

    Get PDF
    With the first observations of solar Ī³-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the Ī³-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the Ī³-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space

    Plasticity of rosette size in response to nitrogen availability is controlled by an RCC1-family protein

    Get PDF
    Nitrogen (N) is fundamental to plant growth, development and yield. Genes underlying N utilization and assimilation are well-characterized, but mechanisms underpinning plasticity of different phenotypes in response to N remain elusive. Here, using Arabidopsis thaliana accessions, we dissected the genetic architecture of plasticity in early and late rosette diameter, flowering time and yield, in response to three levels of N in the soil. Furthermore, we found that the plasticity in levels of primary metabolites were related with the plasticities of the studied traits. Genome-wide association analysis identified three significant associations for phenotypic plasticity, one for early rosette diameter and two for flowering time. We confirmed that the gene At1g19880, hereafter named as PLASTICITY OF ROSETTE TO NITROGEN 1 (PROTON1), encoding for a regulator of chromatin condensation 1 (RCC1) family protein, conferred plasticity of rosette diameter in response to N. Treatment of PROTON1 T-DNA line with salt implied that the reduced plasticity of early rosette diameter was not a general growth response to stress. We further showed that plasticities of growth and flowering-related traits differed between environmental cues, indicating decoupled genetic programs regulating these traits. Our findings provide a prospective to identify genes that stabilize performance under fluctuating environments.Peer reviewe
    • ā€¦
    corecore