204 research outputs found
Self-similar solutions of the one-dimensional Landau-Lifshitz-Gilbert equation
We consider the one-dimensional Landau-Lifshitz-Gilbert (LLG) equation, a
model describing the dynamics for the spin in ferromagnetic materials. Our main
aim is the analytical study of the bi-parametric family of self-similar
solutions of this model. In the presence of damping, our construction provides
a family of global solutions of the LLG equation which are associated to a
discontinuous initial data of infinite (total) energy, and which are smooth and
have finite energy for all positive times. Special emphasis will be given to
the behaviour of this family of solutions with respect to the Gilbert damping
parameter.
We would like to emphasize that our analysis also includes the study of
self-similar solutions of the Schr\"odinger map and the heat flow for harmonic
maps into the 2-sphere as special cases. In particular, the results presented
here recover some of the previously known results in the setting of the
1d-Schr\"odinger map equation
Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity
We consider a nonlocal family of Gross-Pitaevskii equations with nonzero
conditions at infinity in dimension one. We provide conditions on the nonlocal
interaction such that there is a branch of traveling waves solutions with
nonvanishing conditions at infinity. Moreover, we show that the branch is
orbitally stable. In this manner, this result generalizes known properties for
the contact interaction given by a Dirac delta function. Our proof relies on
the minimization of the energy at fixed momentum.
As a by-product of our analysis, we provide a simple condition to ensure that
the solution to the Cauchy problem is global in time.Comment: 48 pages, 11 figure
Bibliographe moderne, courrier international des archives et des bibliothèques (Le)
« Document numérisé pour l\u27ENSSIB » - Charles Schmidt, archiviste du département de l\u27Yonne, publie en 1899 dans la revue Le Bibliographe moderne le cours de bibliographie élaboré à la fin du XVIIIe siècle par le professeur Laire, bibliothécaire de l\u27École centrale de l\u27Yonne, pour les élèves de l\u27établissement. Cette publication s\u27effectue en deux temps, une première partie paraissant dans le numéro de mars-juin 1899, la seconde dans celui de novembre-décembre. Dans le premier article, Schmidt présente le professeur Laire et expose son projet ainsi que les sources qu\u27il a consulté pour cette publication. Schmidt livre ici deux documents : le Mémoire sur l\u27usage qu\u27on peut faire des livres nationaux que Laire adressa en 1792 au président de l\u27Assemblée nationale, et le programme en quatre parties du cours de bibliographie qu\u27il créa en l\u27an VII de la République, avec le détail des deux premières. Le deuxième article est consacré à la troisième partie du cours de Laire. Ces deux articles feront par ailleurs l\u27objet d\u27une édition spécifique en 1900 à Besançon chez P. Jacquin. Ce cours est particulièrement intéressant au regard du contexte historique de la République nouvellement fondée dans lequel il s\u27inscrit
Stabilité des solitons de l'équation de Landau-Lifshitz à anisotropie planaire
Séminaire Laurent Schwartz - EDP et applicationsCet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l'équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris et à la stabilité asymptotique de ces mêmes solitons
Stability in the energy space for chains of solitons of the Landau-Lifshitz equation
International audienceWe prove the orbital stability of sums of solitons for the one-dimensional Landau-Lifshitz equation with an easy-plane anisotropy, under the assumptions that the (non-zero) speeds of the solitons are different, and that their initial positions are sufficiently separated and ordered according to their speeds
Recent results for the Landau-Lifshitz equation
We give a survey on some recent results concerning the Landau-Lifshitz
equation, a fundamental nonlinear PDE with a strong geometric content,
describing the dynamics of the magnetization in ferromagnetic materials. We
revisit the Cauchy problem for the anisotropic Landau-Lifshitz equation,
without dissipation, for smooth solutions, and also in the energy space in
dimension one. We also examine two approximations of the Landau-Lifshitz
equation given by of the Sine-Gordon equation and cubic Schr\"odinger
equations, arising in certain singular limits of strong easy-plane and
easy-axis anisotropy, respectively.
Concerning localized solutions, we review the orbital and asymptotic
stability problems for a sum of solitons in dimension one, exploiting the
variational nature of the solitons in the hydrodynamical framework.
Finally, we survey results concerning the existence, uniqueness and stability
of self-similar solutions (expanders and shrinkers) for the isotropic
Landau-Lifshitz equation with Gilbert term. Since expanders are associated with
a singular initial condition with a jump discontinuity, we also review their
well-posedness in spaces linked to the BMO space
Global well-posedness for a nonlocal Gross-Pitaevskii equation with non-zero condition at infinity
We study the Gross-Pitaevskii equation involving a nonlocal interaction
potential. Our aim is to give sufficient conditions that cover a variety of
nonlocal interactions such that the associated Cauchy problem is globally
well-posed with non-zero boundary condition at infinity, in any dimension. We
focus on even potentials that are positive definite or positive tempered
distributions.Comment: Communications in Partial Differential Equations (2010
Women’s Participation, Empowerment, and Community Development in Tourism Areas in the Philippines
立命館アジア太平洋大学博士(アジア太平洋学)doctoral thesi
Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity
International audienceWe consider a nonlocal family of Gross-Pitaevskii equations with nonzero conditions at infinity in dimension one. We provide conditions on the nonlocal interaction such that there is a branch of traveling waves solutions with nonvanishing conditions at infinity. Moreover, we show that the branch is orbitally stable. In this manner, this result generalizes known properties for the contact interaction given by a Dirac delta function. Our proof relies on the minimization of the energy at fixed momentum. As a by-product of our analysis, we provide a simple condition to ensure that the solution to the Cauchy problem is global in time
- …
