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Traveling waves for some nonlocal 1D Gross�Pitaevskii

equations with nonzero conditions at in�nity

André de Laire
1
and Pierre Mennuni

2

Abstract

We consider a nonlocal family of Gross�Pitaevskii equations with nonzero conditions at

in�nity in dimension one. We provide conditions on the nonlocal interaction such that there

is a branch of traveling waves solutions with nonvanishing conditions at in�nity. Moreover,

we show that the branch is orbitally stable. In this manner, this result generalizes known

properties for the contact interaction given by a Dirac delta function. Our proof relies on

the minimization of the energy at �xed momentum.

As a by-product of our analysis, we provide a simple condition to ensure that the solution

to the Cauchy problem is global in time.

Keywords: Nonlocal Schrödinger equation, Gross�Pitaevskii equation, traveling waves, dark soli-
tons, orbital stability, nonzero conditions at in�nity
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1 Introduction

1.1 The problem

We consider the one-dimensional nonlocal Gross�Pitaevskii equation for Ψ : R × R → C intro-
duced by Gross [40] and Pitaevskii [56] to describe a Bose gas

i∂tΨ = ∂xxΨ + Ψ(W ∗ (1− |Ψ|2)) in R× R, (NGP)

with the boundary condition at in�nity

lim
|x|→∞

|Ψ| = 1. (1)

Here ∗ denotes the convolution in R, and W is a real-valued even distribution that describes
the interaction between particles. The nonzero boundary condition (1) arises as a background
density. This model appears naturally in several areas of quantum physics, for instance in the
description of super�uids [8, 1] and in optics when dealing with thermo-optic materials because
the thermal nonlinearity is usually highly nonlocal [59]. An important property of equation
(NGP) with the boundary condition at in�nity (1), is that it allows to study dark solitons, i.e.
localized density notches that propagate without spreading [43], that have been observed for
example in Bose-Einstein condensates [32, 6].
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There have been extensive studies concerning the dynamics of equation (NGP), and the
existence and stability of traveling waves in the case of the contact interaction W = δ0 (see
[16, 11, 15, 14, 25, 24, 35, 51, 27, 42, 41, 44] and the references therein). However, there are
very few mathematical results concerning general nonlocal interactions with nonzero conditions
at in�nity. In [28, 55] the authors gave conditions on W to get global well-posedness of the
equation and in [29] conditions were established for the nonexistence of traveling waves (in
higher dimensions). Nevertheless, to our knowledge, there is no result concerning the existence
of localized solutions to (NGP) when W is not given by a Dirac delta. The aim of this paper
is to provide conditions on W in order to have stable �nite energy traveling wave solutions,
more commonly refereed to as dark solitons due to the nonzero boundary condition (1). More
precisely, we look for a solution of the form

Ψc(x, t) = u(x− ct),

representing a traveling wave propagating at speed c. Hence, the pro�le u satis�es the nonlocal
ODE

icu′ + u′′ + u(W ∗ (1− |u|2)) = 0 in R. (TWW,c)

By taking the conjugate of the function, we assume without loss of generality that c ≥ 0.

Let us remark that when considering vanishing boundary conditions at in�nity, this kind of
equation has been studied extensively [37, 21, 54] and long-range dipolar interactions in conden-
sates have received recently much attention [45, 20, 4, 7, 50]. However, the techniques used in
these works cannot be adapted to include solutions satisfying (1).

We recall that (NGP) is Hamiltonian and its energy

E(Ψ(t)) =
1

2

∫
R
|∂xΨ(t)|2 dx+

1

4

∫
R

(W ∗ (1− |Ψ(t)|2))(1− |Ψ(t)|2) dx,

is formally conserved, as well as the (renormalized) momentum

p(Ψ(t)) =

∫
R
〈i∂xΨ′(t),Ψ(t)〉

(
1− 1

|Ψ(t)|2
)
dx,

at least as infx∈R |Ψ(x, t)| > 0, where 〈z1, z2〉 = Re(z1z̄2), for z1, z2 ∈ C (see [27, 17]). In this
manner, we seek nontrivial solutions of (TWW,c) in the energy space

E(R) = {v ∈ H1
loc(R) : 1− |v|2 ∈ L2(R), v′ ∈ L2(R)},

and more precisely in the nonvanishing energy space

NE(R) = {v ∈ E(R) : inf
R
|v| > 0},

where the momentum will be well de�ned. It is simple to check, using the Morrey inequality,
that the functions in E(R) are uniformly continuous and satisfy lim|x|→∞ |v(x)| = 1.

When W is given by a Dirac delta function, equation (TWδ0,c) corresponds to the classical
Gross�Pitaevskii equation, which can be solved explicitly. As explained in [10], if c ≥

√
2 the

only solutions in E(R) are the trivial ones (i.e. the constant functions of modulus one) and if
0 ≤ c <

√
2, the nontrivial solutions are given, up to invariances (translations and a multiplica-

tions by constants of modulus one), by

uc(x) =

√
2− c2

2
tanh

(√
2− c2

2
x

)
− i c√

2
. (2)
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Thus there is a family of dark solitons belonging to NE(R) for c ∈ (0,
√

2) and there is one
stationary black soliton associated with the speed c = 0. Notice also that the values of uc(∞)
and uc(−∞) are di�erent, and thus we cannot relax the condition (1) to lim|x|→∞Ψ = 1, as is
usually done in higher dimensions.

The study of equation (TWδ0,c) can be generalized to other types of local nonlinearities such as
the cubic-quintic nonlinearity and some cubic-quintic-septic nonlinearities as shown in [23, 53].
The techniques used by the authors rely on the analysis of a second-order ODE of Newton
type, so that the Cauchy�Lipschitz theorem can be invoked and some explicit formulas can be
deduced. These arguments cannot be applied to (TWW,c) due to the nonlocal interaction. For
this reason, our approach to show existence of traveling waves relies on a priori energy estimates
and a concentration-compactness argument, that allow us to prove that there are functions that
minimize the energy at �xed momentum. These minimizers are solutions to (TWW,c) and we
can also establish that they are orbitally stable (see Theorem 4). These kinds of arguments have
been used by several authors to establish existence of solitons for the (local) Gross�Pitaevskii
equation in higher dimensions and for some related equations with zero conditions at in�nity
(see e.g. [11, 51, 25, 49, 52, 5, 46]). The main di�culty in our case is to handle the nonvanishing
conditions at in�nity, the fact that the constraint given by the momentum is not a homogeneous
function along with the nonlocal interactions.

1.2 The critical speed and assumptions on W

Linearizing equation (NGP) around the constant solution equal to 1 and imposing ei(ξx−wt) as a
solution of the resulting equation, we obtain the dispersion relation

w(ξ) =

√
ξ4 + 2Ŵ(ξ)ξ2, (3)

where Ŵ denotes the Fourier transform of W. Supposing that Ŵ is positive and continuous at
the origin, we get the so-called speed of sound

c∗(W) = lim
ξ→0

w(ξ)

ξ
=

√
2Ŵ(0).

The dispersion relation (3) was �rst observed by Bogoliubov [18] in the study of a Bose�Einstein
gas. He then argued that the gas should move with a speed less than c∗(W) to preserve its
super�uid properties. This leads to the conjecture that there is no nontrivial solution of (TWW,c)
with �nite energy when c > c∗(W). Actually, one of the authors proved this conjecture in [29]
in dimensions greater than one, under some conditions on W.

In order to simplify our computations, we can normalize the equation so that the critical
speed is �xed. Indeed, it is easy to verify that the rescaling x 7→ x/Ŵ(0)1/2 and t 7→ t/Ŵ(0)

allows us to replace Ŵ(ξ) by Ŵ(ξ)/Ŵ(0) in (NGP). Therefore, we assume from now on that

Ŵ(0) = 1 and hence that the critical speed is

c∗ =
√

2.

Before going any further, let us state the assumptions that we need on W.

(H1) W is an even tempered distribution with Ŵ ∈ L∞(R), and Ŵ ≥ 0 a.e. on R. Moreover Ŵ
is continuous at the origin and Ŵ(0) = 1.

(H2) Ŵ belongs to C3
b (R), (Ŵ)′′(0) > −1 and Ŵ(ξ) ≥ 1− ξ2/2, for all |ξ| < 2.
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(H3) Ŵ admits a meromorphic extension to the upper half-plane H := {z ∈ C : Im(z) > 0},
and the only possible singularities of Ŵ on H are simple isolated poles belonging to the
imaginary axis, i.e. they are given by {iνj : j ∈ J}, with νj > 0, for all j ∈ J , 0 ≤ Card J ≤
∞, and their residues Res(Ŵ, iνj) are purely imaginary numbers satisfying

iRes(Ŵ, iνj) ≤ 0, for all j ∈ J, (4)

Also, there exists a sequence of recti�able curves (Γk)k∈N∗ ⊂ H, parametrized by γk :
[ak, bk] → C, such that Γk ∪ [−k, k] is a closed positively oriented simple curve that does
not pass through any poles. Moreover,

lim
k→∞

|γk(t)| =∞, for all t ∈ [ak, bk], and lim
k→∞

length(Γk) sup
t∈[ak,bk]

Ŵ(γk(t))

|γk(t)|4
= 0. (5)

Here Ckb (R) denotes the bounded functions of class Ck whose �rst k derivatives are bounded.
We have also used the convention that the Fourier transform of (an integrable) function is

f̂(ξ) =

∫
R
e−ixξf(x)dx.

In particular, the Fourier transform of the Dirac delta is δ̂0 = 1 and thus assumptions (H1)�(H3)
are trivially ful�lled by W = δ0. Let us make some further remarks about these hypotheses.
Assumption (H1) ensures that the critical speed exists and that the energy functional is nonneg-
ative and well de�ned in E(R). Indeed, let us consider v ∈ E(R), set η = 1− |v|2 and write the
energy in terms of the kinetic and potential energy as

E(v) = Ek(v) + Ep(v), where Ek(v) :=
1

2

∫
R
|v′|2dx and Ep(v) :=

1

4

∫
R

(W ∗ η)η.

By hypothesis (H1) and the Plancherel theorem, we deduce that

0 ≤ Ep(v) =
1

8π

∫
R
Ŵ|η̂|2 ≤ 1

4
‖Ŵ‖L∞‖η‖2L2 ,

so that the functions in E(R) have indeed �nite energy and their potential energy is nonnegative.

Let us recall that for a tempered distribution V ∈ S′(R), we can de�ne the convolution with
a function in Lp(R), through the Fourier transform, as the bounded extension on Lp(R) of the
operator

V ∗ f := F−1(V̂ f̂), f ∈ S(R).

In this manner, the set

Mp(R) = {V ∈ S′(R) : ∃C > 0, ‖V ∗ f‖Lp(R) ≤ C‖f‖Lp(R),∀f ∈ Lp(R)}

is a Banach space endowed with the operator norm denoted by ‖·‖Mp . Thus (H1) implies that
W ∈M2(R), with

‖Ŵ‖L∞(R) = ‖W‖M2 .

We refer to [38] for further details about the properties ofMp(R).

Hypothesis (H2), combined with (H1), imply that Ŵ(ξ) ≥ (1− ξ2/2)+ a.e., that can be seen
as a coercivity property for the energy. In particular, it will allow us to establish the key energy
estimates in Lemmas 2.1 and 2.3. The condition (Ŵ)′′(0) > −1 will be crucial to show that
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the behavior of a solution of (TWW,c) can be formally described in terms of the solution of the
Korteweg�de Vries equation

(1 + (Ŵ)′′(0))A′′ − 6A2 −A = 0,

at least for c close to
√

2 (see Section 3).

The more technical and restrictive assumption (H3) is used only to prove that the curve
associated with the minimizing problem is concave. Indeed, we use some ideas introduced by
Lopes and Mari³ [49] to study the minimization of the nonlocal functional∫

RN
m(ξ)|ŵ(ξ)|2dξ +

∫
RN

F (w(x))dx,

under the constraint
∫
RN G(w)dx = λ, λ ∈ R, for a class of symbols m (see (2.16) in [49]). Here

N ≥ 2, F and G are local functions, and the minimization is over w ∈ Hs(R). The results

in [49] cannot be applied to the symbol m(ξ) = Ŵ(ξ) nor to the minimization over functions
with nonvanishing conditions at in�nity (nor N = 1). However, we can still apply the re�exion
argument in [49], which will lead us to show that∫

R
(W ∗ f)f ≥

∫
R

(W ∗ f̃)f̃ , (6)

for all odd functions f ∈ C∞c (R), where f̃ is given by f̃(x) = f(x) for x ∈ R+, and f̃(x) = −f(x)
for x ∈ R−. Using the sine and cosine transforms

f̂s(ξ) =

∫ ∞
0

sin(xξ)f(x)dx, f̂c(ξ) =

∫ ∞
0

cos(xξ)f(x)dx,

we will see in Section 3 that inequality (6) is equivalent to the following assumption.

(H3') W satis�es ∫ ∞
0
Ŵ(ξ)(|f̂s(ξ)|2 − |f̂c(ξ)|2)dξ ≥ 0,

for all odd functions f ∈ C∞c (R).

Therefore, we can replace (H3) by the weaker (but less explicit) condition (H3'). Finally, let us
notice that if W = δ0, we can verify that condition (H3') is satis�ed by using the Plancherel
formula ∫ ∞

0
|f̂s(ξ)|2dξ =

∫ ∞
0
|f̂c(ξ)|2dξ =

∫ ∞
0
|f(x)|2dx.

At the end of this section we will give some examples of potentials satisfying (H1)�(H3).

1.3 Main results

In the classical minimization problems associated with Schrödinger equations with vanishing
conditions at in�nity, the constraint in given by the mass. In our case, the momentum is the
key quantity that we need to take as a constraint to show the existence of dark solitons. Let us
verify that the momentum

p(v) =
1

2

∫
R
〈iv′, v〉

(
1− 1

|v|2
)
, (7)
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is well de�ned in the nonvanishing energy space. Indeed, a function v ∈ NE(R) is continuous
and admits a lifting v = ρeiφ, where ρ = |v| and φ are real-valued functions in H1

loc(R) (see
e.g. [34]). Since v ∈ NE(R), we have infR ρ > 0, and using that

|v′|2 = ρ′2 + ρ2φ′2,

we infer that |φ′| ≤ |v′|/ infR ρ, so that φ′ ∈ L2(R). Hence, setting η = 1− |v|2 ∈ L2(R), we get
that the integrand in (7) is equal to ηφ′, and therefore (7) is well-de�ned since ηφ′ ∈ L1(R). In
conclusion, for any v ∈ NE(R), the energy and the momentum can be written as

E(v) =
1

2

∫
R
ρ′2 +

1

2

∫
R
ρ2φ′2 +

1

2

∫
R

(W ∗ η)η and p(v) =
1

2

∫
R
ηφ′,

under the assumption Ŵ ∈ L∞(R).

Let us now describe our minimization approach for the existence problem, assuming that W
satis�es (H1) and (H2). For q ≥ 0, we consider the minimization curve

Emin(q) := inf{E(v) : v ∈ NE(R), p(v) = q},

that is well de�ned in view of Lemma 3.1. Moreover, this curve is nondecreasing (see Lemma 3.11).
We also set

q∗ = sup{q > 0 | ∀v ∈ E(R), E(v) ≤ Emin(q)⇒ inf
R
|v| > 0}. (8)

If (H3) is also ful�lled and q ∈ (0, q∗), we will show that minimum associated with Emin(q) is at-
tained and that the corresponding Euler�Lagrange equation satis�ed by the minimizers is exactly
(TWW,c), where c appears as a Lagrange multiplier (see Section 6 for details). More precisely,
our �rst result establishes the existence of a family of solutions of (TWW,c) parametrized by the
momentum.

Theorem 1. Assume that (H1), (H2) and (H3) hold. Then q∗ > 0.027 and for all q ∈ (0, q∗)
there is a nontrivial solution u ∈ NE(R) to (TWW,c) satisfying p(u) = q, for some c ∈ (0,

√
2).

It is important to remark that the constant q∗ is not necessarily small. For instance, in the
caseW = δ0, the explicit solution (2) allows us to compute the momentum of uc, for c ∈ (0,

√
2),

and to deduce that q∗ = π/2. Moreover Emin can be determined and its pro�le is depicted in
Figure 1. Notice that Emin is constant on (q∗,∞) and that in this interval the minimum is not
attained (see e.g. [10]). Since (H1)�(H3) are satis�ed by W = δ0, and since there is uniqueness
(up to invariances) of the solutions to (TWδ0,c), we deduce that the branch of solutions given by
Theorem 1 corresponds to the dark solitons in (2), for c ∈ (0,

√
2). In the general case, we do not

know if the solution given by Theorem 1 is unique (up to invariances). Actually, the uniqueness
for nonlocal equations such as (TWW,c) can be di�cult to establish (see e.g. [3, 46]) and goes
beyond the scope of this work. Concerning the regularity, the solutions given by Theorem 1 are
smooth and we refer to Lemma 6.2 for a precise statement.

To establish Theorem 1, we analyze two problems. First, we provide some general properties
of the curve Emin. Then, we study the compactness of the minimizing sequences associated with
Emin. The next result summarizes the properties of Emin.

Theorem 2. Suppose that W satis�es (H1) and (H2). Then the following statements hold.

(i) The function Emin is even and Lipschitz continuous on R, with

|Emin(p)− Emin(q)| ≤
√

2|p− q|, for all p, q ∈ R.

Moreover, it is nondecreasing and subadditive on R+.
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Figure 1: Curve Emin and solitons in the case W = δ0.

(ii) There exist constants q1, A1, A2, A3 > 0 such that
√

2q−A1q
3/2 ≤ Emin(q) ≤

√
2q−A2q

5/3 +A3q
2, for all q ∈ [0, q1].

(iii) If (H3) or (H3') is satis�ed, then Emin is concave on R+.

(iv) We have q∗ > 0.027. If Emin is concave on R+, then Emin is strictly increasing on [0, q∗),
and for all v ∈ E(R) satisfying E(v) < Emin(q∗), we have v ∈ NE(R).

(v) Assume that Emin is concave on R+. Then Emin(q) <
√

2q, for all q > 0, Emin is strictly
subadditive on R+, and the right and left derivatives of Emin, denoted by E+

min and E−min

respectively, satisfy
0 ≤ E+

min(q) ≤ E−min(q) <
√

2. (9)

Furthermore, E+
min(q)→ E+

min(0) =
√

2, as q→ 0+.

To prove the existence of solutions we use a concentration-compactness argument. Applying
Theorem 2, we show that the minimum is attained at least for q ∈ (0, q∗), so that the set

Sq = {v ∈ NE(R) : E(v) = Emin(q) and p(v) = q}

is nonempty, and thus there are nontrivial solutions to (TWW,c) (see Theorem 6.3). Hence, we
can rely on the Cazenave�Lions [22] argument to show that the solutions are stable. Let us
remark that the Cauchy problem for (NGP) was studied in [28]. Precisely, using the distance

dE(v1, v2) = ‖v1 − v2‖L2(R)+L∞(R) + ‖v′1 − v′2‖L2(R) + ‖|v1| − |v2|‖L2(R),

the energy space E(R) is a complete metric space and for every Ψ0 ∈ E(R) there is a unique global
solution Ψ ∈ C(R, E(R)) with initial condition Ψ0, provided that W ∈M3(R) and that W ≥ 0

or that infR Ŵ > 0 (see Theorem 5.1). However, these conditions are not necessarily ful�lled by
a distribution satisfying (H1)�(H2). Nevertheless, using the energy estimates in Section 2, we
can generalize a result in [28] in the following way.
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Theorem 3. Assume that W ∈ M3(R) is an even distribution, with Ŵ ≥ 0 a.e. on R, and
that Ŵ of class C2 in a neighborhood of the origin with Ŵ(0) = 1. Then for every Ψ0 ∈ E(R),
there exists a unique Ψ ∈ C(R, E(R)) global solution to (NGP) with the initial condition Ψ0.
Moreover, the energy is conserved, as well as the momentum as long as infx∈R |Ψ(x, t)| > 0.

Remark 1.1. As explained before, the condition Ŵ(0) = 1 in Theorem 3 is due to the normal-

ization, and it can be replaced by Ŵ(0) > 0.

We can also endow E(R) with the pseudometric distance

d(v1, v2) = ‖v′1 − v′2‖L2(R) + ‖|v1| − |v2|‖L2(R),

or with the distance used in [10]

dA(v1, v2) = ‖v′1 − v′2‖L2(R) + ‖|v1| − |v2|‖L2(R) + ‖v1 − v2‖L∞([−A,A]),

for A > 0. Notice that d(v1, v2) = 0 if and only if |v1| = |v2| and v1 − v2 is constant. We say
that the set Sq is orbitally stable in (E(R), d) if for all Ψ0 ∈ E(R) and for all ε > 0, there exists
δ > 0 such that if

d(Ψ0,Sq) ≤ δ,
then the solution Ψ(t) of (NGP) associated with the initial condition Ψ0 satis�es

sup
t∈R

d(Ψ(t),Sq) ≤ ε.

Similarly, the set Sq is orbitally stable in (E(R), dA) if for all Ψ0 ∈ E(R) and for all ε > 0, there
exists δ > 0 such that if dA(Ψ0,Sq) ≤ δ, then supt∈R infy∈R dA(Ψ(· − y, t),Sq) ≤ ε. Here we need
to introduce a translation of the �ow, since the dA is not invariant under translations.

Now we can state our main result concerning the existence and stability of traveling waves.

Theorem 4. Suppose that W satis�es (H1) and (H2), and that Emin is concave on R+. Then
the set Sq is nonempty, for all q ∈ (0, q∗). Moreover, every u ∈ Sq is a solution of (TWW,c) for
some speed cq ∈ (0,

√
2) satisfying

E+
min(q) ≤ cq ≤ E−min(q). (10)

Also, cq →
√

2 as q→ 0+.

In addition, if W ∈M3(R), then Sq is orbitally stable in (E(R), d) and in (E(R), dA), for all
q ∈ (0, q∗). Furthermore, for all Ψ0 ∈ E(R) and for all ε > 0, there exists δ > 0 such that if
d(Ψ0,Sq) ≤ δ, then the solution Ψ(t) of (NGP) associated with the initial condition Ψ0 satis�es

sup
t∈R

inf
y∈R

dA(Ψ(· − y, t),Sq) ≤ ε.

In this manner, it is clear that Theorem 1 is an immediate corollary of Theorems 2 and 4, and
that the branch of solutions given by Theorem 1 is orbitally stable provided that W ∈ M3(R).
In particular, we recover the orbital stability proved by several authors for the solitons given
in (2) (see e.g. [47, 16, 24] and the references therein).

We point out that we have not discussed what happens with the minimizing curve for q ≥ q∗.
As mentioned before, for all q > q∗, the curve Emin(q) is constant for W = δ0 (see Figure 1)
and Sq is empty. Moreover, the critical case q = q∗ is associated with the black soliton and its
analysis is more involved (see e.g. [12, 39]). Numerical simulations lead us to conjecture that
similar results hold for a potential satisfying (H1)-(H3), i.e. that Emin(q) is constant and that Sq
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is empty on (q∗,∞), and that there is a black soliton when q = q∗. In addition, in the performed
simulations the value q∗ is close to π/2 (see Section 7). Furthermore, these simulations also show
that (H2) and (H3') are not necessary for the concavity of Emin nor the existence of solutions

of (TWW,c). We think that (H2) could be relaxed, but that the condition (Ŵ)′′(0) > −1 is
necessary. As seen from Theorem 2, we have only used (H3') as a su�cient condition to ensure
the concavity of Emin. If for some W satisfying (H1) and (H2), one is capable of showing that
Emin is concave, then the existence and stability of solutions of (TWW,c) is a consequence of
Theorem 4.

In addition to the smoothness of the obtained solutions (see Lemma 6.2), it is possible to
study further properties of these solitons such as their decay at in�nity and uniqueness (up to
invariances). Another related open problem is to show the nonexistence of traveling waves for
c >
√

2. We will study these questions in a forthcoming paper.

We give now some examples of potentials satisfying conditions (H1), (H2) and (H3)

(i) For β > 2α > 0, we consider Wα,β = β
β−2α(δ0 − αe−β|x|), so its Fourier transform is

Ŵα,β(ξ) =
β

β − 2α

(
1− 2αβ

ξ2 + β2

)
,

so that Ŵα,β(0) = 1, and it is simple to check that (H1) and (H2) are satis�ed. To verify
(H3), it is enough to notice that the only singularity on H of the meromorphic function

Ŵα,β is the simple pole ν1 = iβ and that

iRes(Ŵα,β, iβ) = − αβ

β − 2α
< 0.

Since Ŵα,β is bounded on H away from the pole, we conclude that (H3) is ful�lled. We
recall that, by the Young inequality, L1(R) is a subset ofM3(R). ThereforeWα,β ∈M3(R)
and Theorem 4 applies.

(ii) For α ∈ [0, 1), we take the potential Wα = 1
1−α(δ0 − αV), where

V(x) = − 3

π
ln(1− e−π|x|), and V̂(ξ) =

3(ξ coth(ξ)− 1)

ξ2
.

It can be seen that V̂ is a smooth even positive function on R, decreasing on R+, with
V̂(0) = 1 and decaying at in�nity as 3/ξ. Thus the conditions (H1) and (H2) are satis�ed.
As a function on the complex plane, V̂ is a meromorphic function whose only singularities
on H are given by the simple poles {iπ`}`∈N∗ , and

iRes(Ŵα, iπ`) = iRes(−V̂, iπ`) = − 3

π`
.

To check (H3), we de�ne for k ≥ 2, the functions γ1,k(t) = (k+1/2)π+it, t ∈ [0, (k+1/2)π],
γ2,k(t) = t + i(k + 1/2)π, t ∈ [(k + 1/2)π,−(k + 1/2)π], and γ3,k(t) = −(k + 1/2)π + it,
t ∈ [(k + 1/2)π, 0], so that the corresponding curve Γk is given by the three sides of a
square and Γk does not pass through any poles. Using that for x, y ∈ R (see e.g. [2])

| coth(x+ iy)| =
∣∣∣cosh(2x) + cos(2y)

cosh(2x)− cos(2y)

∣∣∣1/2,
we can obtain a constant C > 0, independent of k, such that |V̂(γj,k(t))| ≤ C, for all
t ∈ [aj,k, bj,k], for j ∈ {1, 2, 3}, where [aj,k, bj,k] is the domain of de�nition of γj,k. As a
conclusion, (H3) is ful�lled. Since V ∈ L1(R), we conclude thatWα ∈M3(R) and therefore
we can apply Theorem 4 to this potential.
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(iii) We can also construct perturbations of previous examples. For instance, using the function
V de�ned above, we set

Ŵσ,m(ξ) =
2m2π2

m2π2 + 2σ

(
1− V̂(ξ)

2
+

σ

ξ2 +m2π2

)
,

for σ ∈ R and m ∈ N∗, so that the poles on H are still iπN∗. It follows that for
σ > −π2m2/2, the potential satis�es (H1), and that (H3) holds if σ ≤ 3. We can also

check that for σ ∈ (−π2m2/2, 3], Ŵσ,m satis�es (H2), and therefore Theorem 4 applies.

In Section 7 we perform some numerical simulations to illustrate the shape of the solitons and
the minimization curves associated with these and other examples. The rest of the paper is
organized as follows: we give some energy estimates in Section 2. In Section 3, we establish the
properties of the minimizing curve and the proof of Theorem 2, and in Section 4 we show the
compactness of the sequences associated with the minimization problem. The orbital stability of
the solutions and Theorem 3 are proved in Section 5. We �nally complete the proof of Theorem 4
in Section 6.

2 Some a priori estimates

We start by establishing an L∞-estimate for the functions in the energy space in terms of their
energy.

Lemma 2.1. Assume that W ∈M2(R) satis�es

Ŵ(ξ) ≥ (1− κξ2)+, a.e. on R, (2.1)

for some κ ≥ 0. Let v ∈ E(R) and set η := 1− |v|2. Then

‖η‖2L∞ ≤ 8κ̃E(v)(1 + 8κ̃E(v) + 2
√

2κ̃E(v)) (2.2)

and
‖η‖2L2 ≤ 8κ̃E(v)(1 + 8κ̃E(v) + 2

√
2κ̃E(v)), (2.3)

with κ̃ = κ+ 1.

Proof. Let W ∈ M2(R) and v ∈ E(R), and set ρ = |v|, η = 1 − ρ2 and x ∈ R. By Plancherel's
identity

η2(x) = 2

∫ x

−∞
ηη′ ≤

∫
R

(η2 + η′2) =
1

2π

∫
R

(1 + ξ2)|η̂|2dξ. (2.4)

By (2.1), we have 1 ≤ Ŵ(ξ) +κξ2 a.e. on R, so that the term on the right-hand side of (2.4) can
be bounded by

1

2π

∫
R

(1 + ξ2)|η̂|2 ≤ 1

2π

∫
R

(Ŵ(ξ) + κ̃ξ2)|η̂|2 = 4Ep(v) + κ̃

∫
R
η′2, (2.5)

with κ̃ = κ + 1. Now we notice that η′ = −2ρρ′, so that η′2 ≤ 4‖v‖2L∞ρ′2. Also, if |v| 6= 0 in
some open set, then we can write v = ρeiθ and |v′|2 = ρ′2 + ρ2θ′2. On the other hand, the set
Ω̃ := {v = 0} coincides with the set {η = 1}, and v′ = 0 and η′ = 0 a.e. on Ω̃. Therefore, we
conclude that

η′2 ≤ 4‖v‖2L∞ |v′|2 a.e. on R. (2.6)

10



Combining (2.4), (2.5) and (2.6), we have

η2(x) ≤ 4Ep(v) + 8κ̃‖v‖2L∞Ek(v) ≤ max(4, 8κ̃‖v‖2L∞)E(v). (2.7)

If ‖v‖2L∞ ≤ 1, inequality (2.2) follows, since max(4, 8κ̃) = 8κ̃. Thus we suppose now that

‖v‖2L∞ > 1. (2.8)

Bearing in mind that η(±∞) = 0, we deduce that there is some x0 ∈ R such that

a := min
R
η = η(x0) = 1− ‖v‖2L∞ .

Therefore, using (2.7) for x0 and (2.8), we get

a2 ≤ 8κ̃(1− a)E(v).

Solving the associated quadratic equation and using that
√
a+ b ≤ √a+

√
b, we conclude that

a ≥ 1

2
(−8κ̃E(v)−

√
64κ̃2E(v)2 + 32κ̃E(v)) ≥ −8κ̃E(v)− 2

√
2κ̃E(v),

which implies that
‖v‖2L∞ ≤ 1 + 8κ̃E(v) + 2

√
2κ̃E(v). (2.9)

By putting together (2.7), (2.8) and (2.9), we obtain (2.2).

To prove (2.3), we use the Plancherel identity and argue as before to get∫
R
η2 ≤ 1

2π

∫
R

(Ŵ(ξ) + κξ2)|η̂|2 ≤ 4Ep(v) + κ

∫
R
η′2 ≤ 4Ep(v) + 8κ‖v‖2L∞Ek(v).

Therefore, using (2.9), inequality (2.3) is established.

Remark 2.2. Let us suppose that W ∈M2(R) is even and that also Ŵ is of class C2 in some

interval [−r, r], with r > 0. Then (Ŵ)′(0) = 0, and by the Taylor theorem we deduce that for
any ξ ∈ (−r, r), there exists ξ̃ ∈ (−r, r) such that

Ŵ(ξ) = 1 + (Ŵ)′′(ξ̃)
ξ2

2
≥ 1− µξ2,

where µ = max[−r,r] |(Ŵ)′′|/2. If 1/µ ≤ r2, we set κ = µ. If 1/µ > r2, we take κ = 1/r2.

Assuming also that Ŵ ≥ 0 a.e. on R, we conclude that in both cases condition (2.1) is ful�lled.

From now on until the end of this paper, we assume that (H1) and (H2) are satis�ed, so in
particular Lemma 2.1 holds true with κ = 1/2. In the sequel, we also use the identity∫

R
(W ∗ f)g =

∫
R

(W ∗ g)f, for all f, g ∈ L2(R), (2.10)

that is a consequence of parity of W stated in (H1).

A key point to obtain the compactness of the sequences in Section 4 is that the momentum
can be controlled by the energy. This kind of inequality is crucial in the arguments when proving
the existence of solitons by variational techniques in the case W = δ0 (see [11, 25]). Moreover,
for an open set Ω ⊂ R and u = ρeiθ ∈ NE(R), we need to be able to control the localized
momentum

pΩ(u) :=
1

2

∫
Ω
ηθ′,

11



by some localized version of the energy. By the Cauchy inequality, setting as usual η = 1− |u|2,
we have

√
2|pΩ(u)| ≤ 1

4

∫
Ω
η2 +

1

2

∫
Ω
θ′2 ≤ 1

4

∫
Ω
η2 +

1

2inf
Ω
ρ2

∫
Ω
ρ2θ′2, (2.11)

but it is not clear how to de�ne a localized version of energy, due the to the nonlocal interactions.
We propose to introduce the localized energy

EΩ(u) :=
1

2

∫
Ω
|u′|2 +

1

4

∫
Ω

(W ∗ ηΩ)ηΩ, with ηΩ := η1Ω.

Notice that if Ω = R, then EΩ(u) = E(u) and pΩ(u) = p(u). Since ηΩ can be discontinuous (and
thus not weakly di�erentiable) when Ω is bounded, we also need to introduce a smooth cut-o�
function as follows: for Ω0 an open set compactly contained in Ω, i.e. Ω0 ⊂⊂ Ω, we set a function
χΩ,Ω0 ∈ C∞(R) taking values in [0, 1] and satisfying

χΩ,Ω0(x) =

{
1 if x ∈ Ω0,

0 if x ∈ R \ Ω.
(2.12)

In the case Ω = Ω0 = R, we simply set χΩ,Ω0 ≡ 1.

Lemma 2.3. Let Ω,Ω0 ⊂ R be two smooth open sets with Ω0 ⊂⊂ Ω and let χΩ,Ω0 ∈ C∞(R) as
above. Let u ∈ E(R) and assume that there is some ε ∈ (0, 1) such that 1− ε ≤ |u|2 ≤ 1 + ε on
Ω. Then √

2|pΩ(u)| ≤ EΩ(u)

1− ε + ∆Ω(u), (2.13)

where the remainder term ∆Ω(u) satis�es the estimate

|∆Ω(u)| ≤ C(‖η‖L2(Ω\Ω0) + ‖ηχ′Ω,Ω0
‖L2(Ω\Ω0) + ‖ηχ′Ω,Ω0

‖2L2(Ω\Ω0)). (2.14)

Here C = C(E(u), ε) is a constant depending on E(u) and ε, but not on Ω nor Ω0. In particular,
in the case Ω = Ω0 = R, we have

|p(u)| ≤ E(u)√
2(1− ε)

. (2.15)

Proof. As usual, we write u = ρeiθ on Ω. As in (2.11), using the Cauchy inequality and that
1− ε ≤ ρ2 ≤ 1 + ε2 on Ω, we have

√
2|pΩ(u)| ≤ σ

4

∫
Ω
η2 +

1

2σ(1− ε)

∫
Ω
ρ2θ′2, (2.16)

with σ > 0 to be �xed later. Now, we write

σ

4

∫
Ω
η2 +

1

2σ(1− ε)

∫
Ω
ρ2θ′2 =

σ

4

∫
Ω

(
η2

Ω − (W ∗ ηΩ)ηΩ

)
+RΩ(u),

where

RΩ(u) :=
σ

4

∫
Ω

(W ∗ ηΩ)ηΩ +
1

2σ(1− ε)

∫
Ω
ρ2θ′2.

Let η̃Ω = ηχΩ,Ω0 and

∆1,Ω(u) :=
σ

4

∫
R

((
η2

Ω − η̃2
Ω

)
− (W ∗ ηΩ)ηΩ + (W ∗ η̃Ω)η̃Ω

)
. (2.17)
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Using the Plancherel theorem and (H2), we have

σ

4

∫
Ω

(
η2

Ω − (W ∗ ηΩ)ηΩ

)
=
σ

4

∫
R

(
η̃2

Ω − (W ∗ η̃Ω)η̃Ω

)
+ ∆1,Ω(u)

=
σ

8π

∫
R
|̂̃ηΩ|2

(
1− Ŵ(ξ)

)
+ ∆1,Ω(u)

≤ σ

16π

∫
R
ξ2|̂̃ηΩ|2 + ∆1,Ω(u)

=
σ

8

∫
R

(η̃′Ω)2 + ∆1,Ω(u).

Noticing that
η̃′2Ω = (η′χΩ,Ω0)2 + 2ηη′χΩ,Ω0χ

′
Ω,Ω0

+ (ηχ′Ω,Ω0
)2,

and that 0 ≤ χΩ,Ω0 ≤ 1, by putting together the estimates above, we conclude that

√
2|pΩ(u)| ≤ σ

8

∫
Ω
η′2 +RΩ(u) + ∆Ω(u),

where the remainder term is given by

∆Ω(u) = ∆1,Ω(u) + ∆2,Ω(u), ∆2,Ω(u) :=
σ

8

∫
Ω

(
2ηη′χΩ,Ω0χ

′
Ω,Ω0

+ (ηχ′Ω,Ω0
)2
)
.

Therefore, since η′2 ≤ 4(1 + ε)ρ′2, taking σ = 1/
√

1− ε2, we obtain

√
2|pΩ(u)| ≤

√
1− ε2

1− ε

∫
Ω

(ρ′2
2

+
ρ2θ′2

2

)
+

1

4
√

1− ε2

∫
Ω

(W ∗ ηΩ)ηΩ + ∆Ω(u),

which gives us (2.13). It remains to show the estimate in (2.14). For the �rst term in ∆1,Ω, we
see that ∫

Ω

∣∣η2
Ω − η̃2

Ω

∣∣ =

∫
Ω\Ω0

η2
∣∣12

Ω − χ2
Ω,Ω0

∣∣ ≤ ‖η‖2L2(Ω\Ω0). (2.18)

For the other term in ∆1,Ω, using (2.10), we have∣∣∣∣∫
R

(W ∗ ηΩ)ηΩ − (W ∗ η̃Ω)η̃Ω

∣∣∣∣ =

∣∣∣∣∫
R

(W ∗ (ηΩ + η̃Ω))(ηΩ − η̃Ω)

∣∣∣∣
≤ 4‖W‖M2‖η‖L2(R)‖η‖L2(Ω\Ω0). (2.19)

Concerning in ∆2,Ω, we have

|∆2,Ω| ≤
σ

8

(
4‖u‖L∞(R)‖u′‖L2(R)‖ηχ′Ω,Ω0

‖L2(Ω\Ω0) + ‖ηχ′Ω,Ω0
‖2L2(Ω\Ω0)

)
. (2.20)

By putting together (2.18), (2.19) and (2.20), and invoking Lemma 2.1, we obtain (2.14).

From now on, we set for q > 0,

Σq := 1− Emin(q)√
2q

. (2.21)

In this manner, the condition Emin(q) <
√

2q is equivalent to Σq > 0. We also de�ne for q > 0
and δ > 0, the set

Xq,δ := {v ∈ NE(R) : |p(v)− q| ≤ δ and |E(v)− Emin(q)| ≤ δ}. (2.22)
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Lemma 2.4. Let q > 0, L > 1 and suppose that Σq > 0. Then there is δ0 > 0 such that for all
δ ∈ [0, δ0] and for all v ∈ Xq,δ, there exists x̄ ∈ R such that

∣∣1− |v(x̄)|2
∣∣ ≥ Σq

L
.

Proof. We argue by contradiction and suppose that the statement is false. Hence, for all δ0 > 0,
there exists δ ∈ [0, δ0] and v ∈ Xq,δ such that

‖1− |v|2‖L∞(R) < Σq/L.

Then, taking δ0 = 1/n, there is δn ∈ [0, 1
n ] and vn ∈ Xq,δn such that

‖1− |vn|2‖L∞(R) < Σq/L.

Since Σq ∈ (0, 1], considering ε = Σq/L, we have ε ∈ (0, 1). Therefore we can apply Lemma 2.3
to conclude that √

2|p(vn)| ≤ 1

(1− Σq/L)
E(vn),

and letting n→∞, we get √
2q
(

1− Σq

L

)
≤ Emin(q),

which is equivalent to Σq ≤ Σq/L, contradicting the fact that L > 1.

Lemma 2.5. Let E > 0 and 0 < m0 < 1 be two constants. There is l0 ∈ N, depending on E
and m0, such that for any function v ∈ E(R) satisfying E(v) ≤ E, one of the following holds:

(i) For all x ∈ R, |1− |v(x)|2| < m0.

(ii) There exist l points x1, x2, . . . , xl, with l ≤ l0, such that

|1− |v(xj)|2| ≥ m0, ∀1 ≤ j ≤ l, and |1− |v(x)|2| ≤ m0, ∀x ∈ R \
l⋃

j=1

[xj − 1, xj + 1].

Proof. The proof is a rather standard consequence of the energy estimates. For the sake of
completeness, we give a proof similar to the one given in [10].

Let us suppose that (i) does not hold. Then the set

C = {z ∈ R : |η(z)| ≥ m0},

is nonempty, where η = 1− |v|2 as usual. Setting Ij = [j − 1/2, j + 1/2], for j ∈ Z, the assertion
in (ii) will follow if we show that l := Card{j ∈ Z, Ij ∩ C 6= ∅} can be bounded by some l0,
depending only on E and m0.

Using that ||v|′| = |v′| (see Lemma 7.6 in [36]), the Cauchy�Schwarz inequality and (2.2), we
deduce that there exists a constant C, depending on E, such that for all x, y ∈ R,

||v(x)|2 − |v(y)|2| = 2

∣∣∣∣∫ y

x
|v|′|v|

∣∣∣∣ ≤ 2‖v‖L∞(R)‖v′‖L2(R)|x− y|
1
2 ≤ C|x− y|1/2.

Thus, setting r = m2
0/(4C

2), we deduce that for any z ∈ C and for any y ∈ [z − r, z + r],

|η(y)| ≥ m0 − ||v(y)|2 − |v(z)|2| ≥ m0

2
.
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Taking r0 = min(r, 1/2) and integrating this inequality, we get, for any z ∈ C,∫ z+r0

z−r0
η2(y)dy ≥ m2

0r0

4
.

Noticing that [z − r0, z + r0] ⊂ Ĩj := [j − 1, j + 1], if z ∈ Ij ∩ C, we conclude that

l̃m2
0r0

4
≤

∑
j∈Z,Ĩj∩C6=∅

∫
Ĩj

η2 ≤ 2‖η‖2L2(R),

where l̃ := Card{j ∈ Z : Ĩj ∩ C 6= ∅}. The conclusion follows from (2.3), taking l0 = 2l̃, since
l ≤ 2l̃.

3 Properties of the minimizing curve

For the study of the minimizing curve, it will be useful to use �nite energy smooth functions
that are constant far away from the origin. For this purpose we introduce the set

E∞0 (R) = {v ∈ NE(R) ∩ C∞(R) : ∃R > 0 s.t. v is constant on B(0, R)c}.

Notice that in the functions in the space E∞0 (R) can have di�erent values near +∞ and near
−∞. Bearing in mind that the solitons uc in (2) satisfy uc(+∞) 6= uc(−∞), we will see that
these kinds of functions are well-adapted to approximate the solutions of (TWW,c).

The next result shows that Emin is well de�ned and that its graph lies under the line y =
√

2x
on R+.

Lemma 3.1. For all q ∈ R, there exists a sequence vn ∈ E∞0 (R) satisfying

p(vn) = q and E(vn)→
√

2|q|, as n→∞. (3.1)

In particular the function Emin : R→ R is well de�ned, and for all q ≥ 0

Emin(q) ≤
√

2q. (3.2)

Proof. The case q = 0 is trivial since it is enough to take v ≡ 1. Let us assume that q > 0 and
consider χ ∈ C∞0 (R) such that

∫
R χ
′2 = q/

√
2. Let us de�ne

a =

√
2

2

∫
R
χ′(y)3dy, αn =

1

n
and βn =

1

n2
− a

qn3
.

Then it is enough to consider

vn = ρne
iθn , where ρn(x) = 1− αnχ′(βnx) and θn(x) =

√
2
αn
βn
χ(βnx).

We can assume that vn does not vanish since |vn| = |ρn| ≥ 1−|αn|‖χ′‖L∞(R). Thus the momentum
of vn is well de�ned and we have

p(vn) =
1

2

∫
R

(1− ρ2
n)θ′n =

√
2

2βn

∫
R

(2αnχ
′(y)− α2

nχ
′(y)2)αnχ

′(y)dy

=
α2
n

βn
q− α3

n

βn
a = q.
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It remains to show that E(vn)→
√

2q. For the kinetic part, we have

Ek(vn) =

∫
R

(1− αnχ′(βnx))αnχ
′(βnx)2dx+

1

2

∫
R

(αnβnχ
′′(βnx))2dx

=
α2
n

βn

∫
R

(1− αnχ′(y))χ′(y)2dy +
α2
nβn
2

∫
R
χ′′(y)2dy

→
∫
R
χ′(y)2dy =

q√
2
,

since αn, βn → 0 and α2
n/βn → 1. For the potential energy, using Plancherel's theorem, the

dominated convergence theorem and the continuity of Ŵ at 0, we get

Ep(vn) =
1

8π

∫
R
Ŵ(ξ)|F(1− ρ2

n)|2(ξ)dξ =
α2
n

8βnπ

∫
R
Ŵ(βnξ)|F(2χ′ − αnχ′2)|2 (ξ) dξ

→
∫
R
χ′2(y)dy =

q√
2
.

Therefore we conclude that (3.1) holds true for q ≥ 0. In the situation q < 0, it is enough to
proceed as above taking ∫

R
χ′2 =

|q|√
2

= − q√
2

and vn = ρne
−iθn .

This concludes the proof of (3.1). By the de�nition of Emin, we also have Emin(q) ≤ E(vn).
Letting n→∞, we obtain (3.2).

Lemma 3.2. The curve Emin is even on R.

Proof. Let q ∈ R and un = ρne
iφn ∈ NE(R) be such that E(un) → Emin(q) and p(un) = q.

Setting vn = ρne
−iφn , it is immediate to verify that E(vn) = E(un) and that p(vn) = −p(un) =

−q. Therefore
E(vn) ≥ Emin(−q),

and letting n → ∞ we conclude that Emin(q) ≥ Emin(−q). Replacing q by −q, we deduce that
Emin(−q) = Emin(q), i.e. that Emin is even.

Corollary 3.3. The constant de�ned in (8) satis�es q∗ > 0.027.

Proof. Let v ∈ E(R), with E(v) ≤ Emin(q). Then, by combining (2.2) and (3.2), with κ̃ = 3/2,
we have

‖1− |v|2‖2L∞ ≤ 12
√

2q(1 + 12
√

2q + 2(3
√

2q)
1
2 ).

Since the right-hand is an increasing function of q, and since the solution of the equation
12
√

2z(1 + 12
√

2z + 2(3
√

2z)
1
2 ) = 1 is

z =

√
2

288

(
(12
√

3 + 4
√

31)2/3 − 4
)2

(12
√

3 + 4
√

31)2/3
≈ 0.0274,

the conclusion follows from the de�nition of q∗.

In view of Lemma 3.2, it is enough to study Emin on R+. Concerning the density of the space
E∞0 (R) in NE(R), we have the following result.
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Lemma 3.4. Let v = ρeiθ ∈ NE(R). Then there exists a sequence functions vn = ρne
iθ in

E∞0 (R), with ρn − 1, θ′n ∈ C∞c (R), such that

‖ρn − ρ‖H1(R) + ‖θ′n − θ′‖L2(R) → 0, as n→∞. (3.3)

In particular
E(vn)→ E(v) and p(vn)→ p(v), as n→∞. (3.4)

Proof. Since v = ρeiθ ∈ NE(R), we deduce that v ∈ L∞(R) and that |v(x)| → 1, as |x| → ∞.
Let

g(x) := ρ(x)− 1 = |v(x)| − 1 =
|v(x)|2 − 1

|v(x)|+ 1
.

Then g ∈ L2(R) and since g′ = 〈v′, v〉/|v|, we conclude that g ∈ H1(R). Therefore, there exists
gn ∈ C∞c (R) such that gn → g in H1(R). Setting ρn = gn + 1, we deduce that ‖ρn − ρ‖H1 → 0,
as n→∞.

Concerning θ, using the density of C∞c (R) in L2(R), we get the existence of a sequence
φn ∈ C∞c (R) converging to θ′ in L2(R). Hence, taking

θn(x) =

∫ x

−∞
φn, (3.5)

we conclude that θ′n−θ′ → 0 in L2(R) and that vn := ρne
iθn belongs to E∞0 (R). The convergences

in (3.4) are a direct consequence of the convergences in (3.3) and the Sobolev injection H1(R) ↪→
L∞(R).

Remark 3.5. If v ∈ E∞0 (R), then we can write v = ρeiθ, with ρ, θ ∈ C∞(R) and such that
ρ − 1, θ′ ∈ C∞c (R). Hence the function θ is constant outside supp(θ′) and without loss of
generality we can assume that there is R > 0 such that θ(x) ≡ 0 for all x ≤ −R, or that θ(x) ≡ 0
for all x ≥ R (but we cannot assume that θ(x) ≡ 0 for all |x| ≥ R). Therefore, w.l.o.g. we can
suppose that v(x) ≡ 1 for all x ≤ −R or that v(x) ≡ 1 for all x ≥ R, for some R > 0 large
enough.

To handle the nonlocal interaction term in the energy in the construction of comparison
sequences, we use introduce the functional

B(f) :=

∫
R

(W ∗ f)f,

for f ∈ L2(R;R). It is clear that if u ∈ E(R), then B(1−|u|2) = 4Ep(u). The following elementary
lemma will be useful.

Lemma 3.6. For all f, g ∈ L2(R) we have

B(f + g) = B(f) +B(g) + 2

∫
R

(W ∗ f)g. (3.6)

Assume further that g ∈ C∞c (R) and that there is a sequence of numbers (yn) such that yn →∞,
as n→∞. Then, setting set gn(x) = g(x− yn), we have

B(f + gn)−B(f)−B(gn) = 2

∫
R

(W ∗ f)gn → 0, as n→∞. (3.7)

Proof. The identity (3.6) is a direct consequence of (2.10). The convergence in (3.7) follows from
the fact that gn ⇀ 0 in L2(R).
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We �nally conclude that we can modify a function with energy close to Emin(q) such that it
is constant far away, but the momentum remains unchanged.

Corollary 3.7. Let u = ρeiθ ∈ NE(R). There exists a sequence un ∈ E∞0 (R) such that

p(un) = p(u) and E(un)→ E(u), as n→∞. (3.8)

Proof. Let vn = ρne
iθ ∈ E∞0 (R) be the sequence given by Lemma 3.4 such that

E(vn)→ E(u) and p(vn)→ p(u), as n→∞. (3.9)

If p(u) 6= 0, we set αn = p(u)/p(vn). Therefore αn → 1 and it is straightforward to verify that
the sequence un = ρne

iαnθn satis�es (3.8).

The case p(u) = 0 is more involved. In this instance, we may assume that δn := p(vn) 6= 0
for n su�ciently large. Otherwise, up to a subsequence, the conclusion holds with un = vn. By
Lemma 3.1, we get the existence of a sequence wn ∈ E∞0 (R) such that

p(wn) = −δn and E(wn)→ 0, as n→∞. (3.10)

Let Rn, rn > 0 be such that the functions

fn := 1− |vn|2 and gn := 1− |wn|2

are supported in the balls B(0, Rn) and B(0, rn), respectively. Taking into account Remark 3.5,
without loss of generality, we can assume that the following function is continuous and belongs
to E∞0 (R)

un =


vn, on (−∞, Rn),

1, on [Rn,−rn + yn],

wn(· − yn), on (−rn + yn,∞),

(3.11)

where yn is a sequence of points such that Rn < −rn+yn. For simplicity, we set w̃n = wn(·−yn)
and g̃n := 1− |w̃n|2. It follows that

p(un) = p(vn) + p(w̃n) = 0 and Ek(un) = Ek(vn) + Ek(wn). (3.12)

In particular, combining with (3.9) and (3.10), we infer that Ek(un) → Ek(u). In addition,
1− |un|2 = fn + g̃n, so that (3.6) leads to

Ep(un) =
1

4
B(fn) +

1

4
B(gn) +

1

2

∫
R

(W ∗ fn)g̃n = Ep(vn) + Ep(wn) +
1

2

∫
R

(W ∗ fn)g̃n.

Therefore
|Ep(un)− Ep(vn)| ≤ Ep(wn) + ‖W‖M2‖fn‖L2‖gn‖L2 . (3.13)

Using the estimate (2.3), (3.9) and (3.10), we conclude that ‖fn‖L2 is bounded and that ‖gn‖L2 → 0,
so that Ep(un)→ Ep(u), which completes the proof of the corollary.

Corollary 3.8. For all q ≥ 0 and ε > 0, there is v ∈ E∞0 (R) such that

p(v) = q and E(v) < Emin(q) + ε.

In particular
Emin(q) = inf{E(v) : v ∈ E∞0 (R), p(v) = q}.
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Proof. Let q ≥ 0 and ε > 0. By de�nition of Emin, there is a sequence vm ∈ NE(R) such that
p(vm) = q and E(vm)→ Emin(q), as m→∞. Hence there is m0 such that

E(vm0) < Emin(q) + ε/2. (3.14)

By Corollary 3.7, we deduce the existence of v ∈ E∞0 (R) such that p(v) = p(vm0) = q and
|E(vm0)− E(v)| ≤ ε/2. Combining with (3.14), the conclusion follows.

Proposition 3.9. Emin is continuous and

|Emin(p)− Emin(q)| ≤
√

2|p− q|, for all p, q ∈ R. (3.15)

Proof. We assume without loss of generality that q ≥ p ≥ 0. It is enough to show that

Emin(q) ≤ Emin(p) +
√

2(q− p). (3.16)

Let δ > 0. By Corollary 3.8 and Remark 3.5, there is vδ ∈ E∞0 (R) such that for some Rδ > 0,
the function 1− |vδ|2 is supported on B(0, Rδ), vδ = 1 on [Rδ,∞),

p(vδ) = p and E(vδ) ≤ Emin(p) + δ/3. (3.17)

Now, setting s = q− p and invoking Lemma 3.1, we deduce that there is wδ ∈ E∞0 (R) such that
for some rδ > 0, 1− |wδ|2 is supported on B(0, rδ), wδ = 1 on (−∞, rδ],

p(wδ) = s and E(wδ) ≤
√

2s + δ/3. (3.18)

Let fδ = 1 − |vδ|2 and gδ = 1 − |wδ|2. Then fδ and gδ have compact supports and applying
Lemma 3.6 we can choose yδ ∈ R, large enough, such that their supports do not intersect. Finally,
we infer that the function

uδ =


vδ, on (−∞, Rδ),
1, on [Rδ,−rδ + yδ],

wδ(· − yδ), on (−rδ + yδ,∞),

(3.19)

satis�es
p(uδ) = p(vδ) + p(wδ(· − yδ)) = q and Ek(uδ) = Ek(vδ) + Ek(wδ). (3.20)

Moreover, since
1− |uδ|2 = fδ + gδ(· − yδ),

applying Lemma 3.6 and increasing yδ if necessary, we conclude that

Ep(uδ) ≤ Ep(vδ) + Ep(wδ) + δ/3. (3.21)

Therefore, combining (3.17), (3.18), (3.20) and (3.21), we get

Emin(q) ≤ E(uδ) ≤ Emin(p) +
√

2(q− p) + δ.

Letting δ → 0, we obtain (3.16).

As noticed by Lions [48], the properties established above are usually su�cient to check that
the minimizing curve is subadditive, as stated in the following result.

Lemma 3.10. Emin is subadditive on R+, i.e.

Emin(p + q) ≤ Emin(p) + Emin(q), for all p, q ≥ 0. (3.22)
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Proof. Let p, q ≥ 0 and δ > 0. By using Corollary 3.8 and arguing as in the proof of Proposi-
tion 3.9, we get the existence of v, w ∈ E∞0 (R) such that

p(v) = p, p(w) = q, E(v) ≤ Emin(p) + δ/3 and E(w) ≤ Emin(q) + δ/3,

with v and w constant on B(0, R)c and B(0, r)c, respectively, for some R, r > 0. As in previous
proofs, we de�ne

u =


v, on (−∞, R),

1, on [R,−r + y],

w(· − y), on (−r + y,∞),

with y large enough such that

Ep(u) ≤ Ep(v) + Ep(w) + δ/3.

Since Ek(u) = Ek(v) + Ek(w) and p(u) = p(v) + p(w) = p + q, we conclude that

Emin(p + q) ≤ E(u) ≤ E(v) + E(w) +
δ

3
≤ Emin(p) + Emin(q) + δ.

Letting δ → 0, inequality (3.22) is established.

In some minimization problems, there is some kind of homogeneity in the functionals that
allows to obtain the strict subadditive property. In our case, the homogeneity give us only the
monotonicity of the curve.

Lemma 3.11. Emin is nondecreasing on R+.

Proof. Let 0 < p < q and λ = p/q ∈ (0, 1). As in previous proofs, for δ > 0 we take v = ρeiθ in
NE(R) such that E(v) < Emin(q) + δ and p(v) = q. Then we verify that the function vλ = ρeiλθ

satis�es p(vλ) = λq and E(vλ) ≤ E(v). Therefore

Emin(λq) ≤ E(vλ) ≤ E(v) < Emin(q) + δ,

so that the conclusion follows letting δ → 0.

Hypothesis (H3') provides a su�cient condition to ensure the concavity of the function Emin.
As mentioned in the introduction, the proof relies some identities developed by Lopes and Mari³
in [49].

Proposition 3.12. Assume that (H3') holds. Then for all p, q ≥ 0,

Emin(p) + Emin(q)

2
≤ Emin

(p + q

2

)
. (3.23)

In particular Emin is concave on R+.

Proof. Let p, q > 0 and δ > 0. By Corollary 3.8, there is u = ρeiθ ∈ E∞0 (R) such that

p(u) =
p + q

2
and E(u) ≤ Emin

(p + q

2

)
+
δ

2
. (3.24)

By the dominated convergence theorem, it follows that the map G : R→ R given by

G(a) :=
1

2

∫ ∞
a

(1− ρ2)θ′
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is continuous, with lima→∞G(a) = 0 and lima→−∞G(a) = p(u) = (p+q)/2. Hence, by the mean

value theorem, there is a0 such that G(a0) = p/2. Thus the translation ũ(x) := ρ̃(x)eiθ̃(x) =
ρ(x− a0)eiθ(x−a0) satis�es

1

2

∫ ∞
0

(1− ρ̃2)θ̃′ =
p

2
and

1

2

∫ 0

−∞
(1− ρ̃2)θ̃′ =

q

2
. (3.25)

For notational simplicity, we continue to write u, ρ and θ for ũ, ρ̃ and θ̃. Now we introduce the
re�exion operators

(T+ρ)(x) =

{
ρ(x), if x ≥ 0,

ρ(−x), if x < 0,
(T−ρ)(x) =

{
ρ(−x), if x ≥ 0,

ρ(x), if x < 0,

and

(S+θ)(x) =

{
θ(x)− θ(0), if x ≥ 0,

θ(0)− θ(−x), if x < 0,
(S−θ)(x) =

{
θ(0)− θ(−x), if x ≥ 0,

θ(x)− θ(0), if x < 0.

Since ρ and θ are continuous and belong to H1
loc(R), we can check that the functions (T±ρ)

and (S±ρ) are continuous on R and also belong to H1
loc(R). Then it is simple to verify that the

functions
u± = (T±ρ)eiS

±θ

belong to NE(R). Bearing in mind (3.25), we obtain

p(u+) = p and p(u−) = q,

which implies that
Emin(p) ≤ E(u+) and Emin(q) ≤ E(u−). (3.26)

In addition
E(u+) + E(u−) = 2Ek(u) + Ep(u+) + Ep(u−). (3.27)

We claim that
Ep(u+) + Ep(u−) ≤ 2Ep(u), (3.28)

which combined with (3.27), allows us to conclude that E(u+) + E(u−) ≤ 2E(u). By putting
together this inequality, (3.24) and (3.26), we get

Emin(p) + Emin(q) ≤ 2E(u) ≤ 2Emin

(p + q

2

)
+ δ,

so that (3.23) is proved. Since Emin is a continuous function by Proposition 3.9, we conclude
that E is concave on R+.

It remains to prove (3.28). Let us set η = 1− |u|2, η1 = 1− |u+|2, η2 = 1− |u−|2,

g(x) =
1

2
(η(x) + η(−x)) and f(x) =

1

2
(η(x)− η(−x)).

Hence g is even, f is odd,

η = f + g, η1 = g + f̃ and η2 = g − f̃ ,
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where f̃(x) = f(x) for x ∈ R+ and f̃(x) = −f(x) for x ∈ R−. By Plancherel's identity, we then
can write

8π(2Ep(u)− Ep(u+)− Ep(u−)) =

∫
R
Ŵ(ξ)(2|η̂|2 − |η̂1|2 − |η̂2|2)

=

∫
R
Ŵ(ξ)(2|ĝ + f̂ |2 − |ĝ +

ˆ̃
f |2 − |ĝ − ˆ̃

f |2)

= 2

∫
R
Ŵ(ξ)(|f̂ |2 − | ˆ̃f |2 + 4

∫
R
Ŵ(ξ)〈ĝ, f̂〉

= 4π(B(f)−B(f̃)),

where we have used the parity of Ŵ to check that
∫
R Ŵ(ξ)〈ĝ, f̂〉 = 0. To conclude, we only need

to show that B(f)−B(f̃) ≥ 0. Indeed, since f is odd and f̃ is even, we have f̂(ξ) = −2if̂s(ξ) and
ˆ̃
f(ξ) = 2f̂c(ξ). Therefore, by Plancherel's theorem, (H3'), and using that Ŵ(ξ)(|f̂s(ξ)|2−|f̂c(ξ)|2)
is an even function,

(2π)(B(f)−B(f̃)) = 4

∫
R
Ŵ(ξ)(|f̂s(ξ)|2 − |f̂c(ξ)|2)dξ = 8

∫ ∞
0
Ŵ(ξ)(|f̂s(ξ)|2 − |f̂c(ξ)|2)dξ ≥ 0,

which completes the proof.

The following lemma shows that assumption (H3) is stronger than (H3'), and is a reminiscent
of Lemmas 2.1 and 2.6 in [49].

Lemma 3.13. Assume that (H3) holds. Then (H3') is satis�ed.

Proof. We notice that by Fubini's theorem, we have

|f̂s(ξ)|2 =

∫ ∞
0

∫ ∞
0

sin(xξ) sin(yξ)f(x)f(y)dxdy,

|f̂c(ξ)|2 =

∫ ∞
0

∫ ∞
0

cos(xξ) cos(yξ)f(x)f(y)dxdy.

Thus, introducing the complex-valued function

h(ξ) =

∫ ∞
0

∫ ∞
0

ei(x+y)ξf(x)f(y)dxdy =

(∫ ∞
0

eixξf(x)dx

)2

,

we conclude that ∫
R
Ŵ(ξ)(|f̂s(ξ)|2 − |f̂c(ξ)|2)dξ = −

∫
R
Ŵ(ξ)h(ξ)dξ. (3.29)

Then, using that h̄(ξ) = h(−ξ) and that Ŵ is even, we conclude that∫
R
Ŵ(ξ)(|f̂s(ξ)|2 − |f̂c(ξ)|2)dξ = −

∫
R
Ŵ(ξ) Re(h(ξ))dξ = −

∫
R
Ŵ(ξ)h(ξ)dξ. (3.30)

We will compute the integral in the right-hand side of (3.30) by using Cauchy's residue theorem.
First we notice that h is real-valued and nonnegative on the imaginary line since

h(it) =

(∫ ∞
0

e−txf(x)dx

)2

≥ 0, for all t ∈ R.
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Also, since f ∈ C∞c (R), h is a holomorphic function on C. To establish the decay of h on the
upper half-plane, we use that h(z) = H(z)2, where

H(z) =

∫ ∞
0

eixzf(x)dx.

Using the fact that eixz = 1
iz

d
dxe

ixz and integrating by parts, we get for z 6= 0,

H(z) = −f(0)

iz
− 1

iz

∫ ∞
0

eixzf ′(x)dx.

Since f is odd, f(0) = 0, so that integrating by parts once more, we have

H(z) = −f
′(0)

z2
− 1

z2

∫ ∞
0

eixzf ′′(x)dx.

Therefore,

|h(z)| ≤ C

|z|4 , for all z 6= 0, Im(z) ≥ 0, (3.31)

where C = (|f ′(0)|+ ‖f ′′‖L1)2. Using the curves γk, Cauchy's residue theorem yields∫ k

−k
Ŵ(ξ)h(ξ)dξ +

∫ bk

ak

Ŵ(γk(t))h(γk(t))γ
′
k(t)dt = 2πi

∑
j∈Jk

h(iνj)Res(Ŵ, iνj) ≤ 0, (3.32)

where Jk refers to the poles enclosed by Γk. Taking into account (3.31), we see that∣∣∣ ∫ bk

ak

Ŵ(γk(t))h(γk(t))γ
′
k(t)dt

∣∣∣ ≤ C length(Γk) sup
t∈[ak,bk]

|Ŵ(γk(t))|
|γk(t)|4

,

so that the decay in (5) gives that the integral goes to 0 as k → ∞. Therefore, using the
dominated convergence theorem, we can pass to the limit in (3.32), and using (3.30), we conclude
that condition (H3') is satis�ed.

The following propositions provide estimates for the curve Emin near the origin.

Proposition 3.14. There are constants q0 > 0 and K0 > 0 such that
√

2q−K0q
3/2 ≤ Emin(q), for all q ∈ [0, q0). (3.33)

Proof. Invoking Corollary 3.8 and (3.2), for δ ∈ (0, 1/2), we have the existence of a function
v ∈ NE(R) such that p(v) = q and E(v) < Emin(q) + δ ≤

√
2q + δ. Then, using the estimate

(2.2), we conclude that there is some q0 > 0 small and a constant K > 0, such that if q ≤ q0,
then E(v) ≤ 1 and also

|1− |v|2| ≤ K(
√

2q + δ). (3.34)

Since we can assume that K(
√

2q0 + δ) < 1, we can apply the inequality (2.15) in Lemma 2.3 to
conclude that

√
2(1− (K(

√
2q + δ)1/2)p(v) ≤ E(v). Inequality (3.33) follows letting δ → 0.

The rest of the section is devoted to establish the following upper bound for Emin. So far, we
have assumed that (H1) and (H2) hold, but we have not used the C3 regularity nor the condition

(Ŵ)′′(0) > −1. These hypotheses are going to be essential to prove the following proposition.

Proposition 3.15. There exist constants q1,K1,K2 > 0, depending on ‖Ŵ‖C3, such that

Emin(q) ≤
√

2q−K1q
5/3 +K2q

2, for all q ∈ [0, q1], (3.35)
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As an immediate consequence of Propositions 3.14 and 3.15, is that Emin is right di�erentiable
at the origin, with E+

min(0) =
√

2. Moreover, if Emin is concave we also deduce that Emin is strictly
subadditive as a consequence of the following elementary lemma (see e.g. [11, 25]).

Lemma 3.16. Let f : [0,∞)→ R be continuous concave function, with f(0) = 0, and with right
derivative at the origin a := f+(0). Then for any s > 0, the following alternative holds:

(i) f is linear on [0, s], with f(p) = ap, for all p ∈ [0, s], or

(ii) f is strictly subadditive on [0, s].

Corollary 3.17. The right derivative of Emin at the origin exists and E+
min(0) =

√
2. In partic-

ular, if Emin is concave on R+, then Emin is strictly subadditive on R+.

The proof of Proposition 3.15 is inspired on the fact that the Korteweg�de Vries (KdV)
equation provides a good approximation of solutions of the Gross�Pitaveskii equation when
W = δ0 in the long-wave regime [60, 13, 26]. Our aim is to extend this idea to the nonlocal
equation (NGP). Let us explain how this works in the case of solitons, performing �rst some
formal computations. We are looking to describe a solution of (TWW,c) with c ∼

√
2, so we

consider
c =

√
2− ε2,

and use the ansatz
uε(x) = (1 + ε2Aε(εx))eiεϕε(εx).

Therefore, setting
Ŵε(ξ) := Ŵ(εξ), (3.36)

i.e. Wε(x) =W(x/ε)/ε in the sense of distributions, we deduce that uε is a solution to (TWW,c)
if (Aε, ϕε) satis�es

ε2A′′ε − ε2(1 + ε2Aε)ϕ
′2
ε − cϕ′ε(1 + ε2Aε)− (1 + ε2Aε)

(
Wε ∗ (2Aε + ε2A2

ε)
)

= 0, (3.37)

2ε2A′εϕ
′
ε + (1 + ε2Aε)ϕ

′′
ε + cA′ε = 0. (3.38)

To handle the nonlocal term, we use the following lemma.

Lemma 3.18. For all f ∈ H3(R), we have

Wε ∗ f = f − ε2

2
(Ŵ)′′(0)f ′′ + ε3Rε(f), (3.39)

where

‖Rε(f)‖L2(R) ≤
1

6
‖Ŵ ′′′‖L∞(R)‖f ′′′‖L2(R).

Proof. Let us set

Rε(f) :=
1

ε3

(
Wε ∗ f − f +

ε2

2
(Ŵ)′′(0)f ′′

)
.

By Plancherel's theorem, we have

2π‖Rε(f)‖2L2(R) = ‖F(Rε(f))‖2L2(R) =
1

ε6

∫
R

∣∣∣Ŵ(εξ)− 1− ε2ξ2

2
(Ŵ)′′(0)

∣∣∣2|f̂(ξ)|2dξ. (3.40)

Now, by Taylor's theorem and the fact that (Ŵ)′(0) = 0, we deduce that for all ξ ∈ R and ε > 0,
there exists zε,ξ ∈ R such that

Ŵ(εξ) = 1 +
ε2ξ2

2
(Ŵ)′′(0) +

ε3ξ3

6
(Ŵ ′′′)(zε,ξ).
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Replacing this equality into (3.40), we conclude that

√
2π‖Rε(f)‖L2(R) ≤

1

6
‖Ŵ ′′′‖L∞(R)‖F(f ′′′)‖L2(R) =

√
2π

6
‖Ŵ ′′′‖L∞(R)‖f ′′′‖L2(R),

which completes the proof of the lemma.

In this manner, applying Lemma 3.18, we formally deduce from (3.37)�(3.38) that

−cϕ′ε − 2Aε + ε2(−cϕ′εAε − 3A2
ε + (1 + Ŵ ′′(0))A′′ε − ϕ′2ε ) = O(ε3), (3.41)

ϕ′′ε + cA′ε + ε2(2ϕ′εA
′
ε +Aεϕ

′′
ε) = 0. (3.42)

Therefore for the speed c =
√

2− ε2, (3.41) implies that

ϕ′ε = −2Aε +O(ε2). (3.43)

Di�erentiating (3.41), adding (3.42) multiplied by c, using (3.43), and supposing that Aε and ϕε
converge to some functions A and ϕ, respectively, as ε→ 0, we obtain the limit equation

−A′ − 12AA′ + (1 + Ŵ ′′(0))A′′′ = 0.

Thus, imposing that A,A′, A′′ → 0 as |x| → ∞, by integration, we get

(1 + Ŵ ′′(0))A′′ − 6A2 −A = 0. (3.44)

By hypothesis (H2), we have (Ŵ)′′(0) > −1, so that setting

ω := (1 + (Ŵ)′′(0))1/2,

so that the solution to (3.44) (up to translations) corresponds to a soliton for the KdV equation
given explicitly by

A(x) := −1

4
sech2

( x
2ω

)
. (3.45)

Moreover, (3.43) reads in the limit ϕ′ = −
√

2A, so that we choose ϕ as

ϕ(x) :=
ω√
2

tanh
( x

2ω

)
. (3.46)

In this manner, we should expect that uε(x) ∼ (1 + ε2A(εx))eiεϕ(εx). This is the motivation of
the following result.

Lemma 3.19. Let vε(x) = (1 + ε2A(εx))eiεϕ(εx), where A and ϕ are given by (3.45) and (3.46).
Then

E(vε) =
ω

3

(
ε3 − ε5

4

)
+O(ε6) and p(vε) =

√
2ω

6

(
ε3 − ε5

10

)
, (3.47)

where O(ε7)/ε7 is a function that is bounded in terms of ‖Ŵ‖W 3,∞ , uniformly for all ε ∈ (0, 1].

Proof. Let us �rst compute the momentum. Bearing in mind that ϕ′ = −
√

2A, we have

p(vε) = −1

2

∫
R

(
2ε2A(εx) + ε4A(εx)2

)
ε2ϕ′(εx)dx

=

√
2ε3

2

∫
R

(
2A(x)2 + ε2A(x)3

)
dx

=
√

2ωε3

∫
R

(
1

8
sech(x)4 − ε2

64
sech(x)6

)
dx,
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so using that
∫
R sech4(x)dx = 4/3 and that

∫
R sech6(x)dx = 16/15, we obtain the expression for

p(vε) in (3.47). For the kinetic energy we can proceed in the same manner. Indeed, using that

A′(x) =
1

4ω
tanh

( x
2ω

)
sech2

( x
2ω

)
, and

∫
R

sech(x)4 tanh(x)2 =
4

15
,

we get

Ek(vε) =
1

2

∫
R

(
ε6A′(εx)2 + ε4(1 + ε2A(εx))2ϕ′(εx)2

)
dx

= ε3

∫
R
A(x)2dx+

ε5

2

∫
R
A′(x)2 + 4A(x)3dx

=
ε3ω

8

∫
R

sech(x)4dx+
ε5

16ω

∫
R

sech4(x) tanh2(x)dx− ε5ω

16

∫
R

sech6(x)dx

=
ε3ω

6
+ ε5

(
1

60ω
− ω

15

)
.

Now, for the potential energy, invoking Lemma 3.18 and (3.44), we have

Ep(vε) =
1

4ε

∫
R

(
Wε ∗ (2ε2A+ ε4A2)

)
(x)(2ε2A(x) + ε4A(x)2)dx

= ε3

∫
R
A(x)2dx+ ε5

∫
R

(
A(x)3 − Ŵ

′′(0)

2
A(x)A′′(x)

)
dx+O(ε6)

= ε3

∫
R
A(x)2dx+ ε5

∫
R

(
A(x)3 − Ŵ

′′(0)

2ω2

(
A(x)2 + 6A(x)3

))
dx+O(ε6)

=
ε3ω

6
− ε5

60

(
ω +

1

ω

)
+O(ε6),

where we have also used that Ŵ ′′(0) = ω2− 1. Adding the expressions for Ek and Ep, we obtain
the estimate for the energy in (3.47).

Proof of Proposition 3.15. For q small, we can parametrize q as a function of ε as

qε =

√
2ω

6

(
ε3 − ε5

10

)
,

so qε is a strictly increasing function of ε ∈ [0, 1]. The idea is to express ε in terms of qε in
order to obtain E(vε) in (3.47) as a function of qε. Then (3.35) will follow from the facts that
p(vε) = qε and that Emin(qε) ≤ E(vε). For notational simplicity, we set

sε :=
3
√

2

ω
qε = ε3 − ε5

10
, (3.48)

so that
ε3/2 ≤ sε ≤ ε3 ≤ 1, for all ε ∈ [0, 1]. (3.49)

Applying Taylor's theorem and noticing that ε5/10 ≤ sε, we infer that there is some pε ∈ (sε, 2sε)
such that

ε5 =

(
sε +

ε5

10

)5/3

= s5/3
ε +

5ε5

30
p2/3
ε .
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Using again (3.49), we conclude that

ε5 = s5/3
ε +O(s7/3

ε ) =

(
3
√

2

ω

)5/3

q5/3
ε +O(q7/3

ε ).

Combining this asymptotics with (3.47), (3.48) and (3.49), we get

E(vε) =
ω

3

(
3
√

2

ω
qε −

3ε5

20

)
+O(ε6) =

√
2qε −K1q

5/3
ε +O(q2

ε),

where K1 = (3
√

2/ω)5/3ω/20. Since Emin(qε) ≤ E(vε), we conclude that (3.35) holds true.

We are now in position to prove Theorem 2.

Proof of Theorem 2. Statement (i) follows from Lemma 3.2, Proposition 3.9 and Lemmas 3.10
and 3.11. From Propositions 3.14 and 3.15, we obtain (ii). Proposition 3.12 and Lemma 3.13
establish (iii).

By Corollary 3.3, q∗ > 0.027. Let us proof now the rest of the statement in (iv). Since
Emin is nondecreasing on [0, q∗), if we suppose that Emin is not strictly increasing, then Emin is
constant in some interval [a, b], with 0 ≤ a < b < q∗. Since Emin is concave, this implies that
Emin is constant on [a,∞) and therefore Emin(a) = Emin(q∗), which contradicts the de�nition of
q∗ in (8). Finally, we remark that if E(v) < Emin(q∗), for some v ∈ E(R), using the fact that
Emin(0) = 0, the intermediate value theorem gives us the existence of some q̃ ∈ [0, q∗) such that
E(v) = Emin(q̃). Since q̃ < q∗, the de�nition of q∗ implies that |v| does not vanish.

We now establish (v). Arguing by contradiction, we show that Emin(q) <
√

2q, for all q > 0.
Indeed, in view of (3.2), let us suppose that for some p > 0 we have Emin(p) =

√
2p. Since Emin

is concave, the function q 7→ Emin(q)/q nonincreasing, thus

√
2 =

Emin(p)

p
≤ Emin(q)

q
≤
√

2, for all q ∈ (0, p).

Therefore Emin(q) =
√

2q, for all q ∈ (0, p), which contradicts (ii).

At this point, we recall that the concavity of Emin implies that E+
min is right-continuous, so

that, by Corollary 3.17, we have E+
min(q) → E+

min(0) =
√

2, as q → 0+. Using also that Emin is
nondecreasing, (3.2) and Corollary 3.17, we deduce the other statements in (v).

4 Compactness of the minimizing sequences

We start now the study of the minimizing sequences associated with the curve Emin. The
following result shows that the set Sq in Theorem 4 is nonempty, and also allows us to establish
the orbital stability in the next section.

Theorem 4.1. Assume that W satis�es (H1) and (H2), and that Emin is concave on R+. Let
q ∈ (0, q∗) and (un) in NE(R) be a sequence satisfying

p(un)→ q and E(un)→ Emin(q), (4.1)

as n→∞. Then there exists v ∈ NE(R), a sequence of points (xn) such that, up to a subsequence
that we still denote by un, the following convergences hold

un(·+ xn)→ v(·), in L∞loc(R), (4.2)

1− |un(·+ xn)|2 → 1− |v(·)|2, in L2(R), (4.3)

u′n(·+ xn)→ v′(·), in L2(R), (4.4)
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as n→∞. In addition, there is a constant ν > 0 such that

inf
R
|un(·+ xn)| ≥ ν, for all n. (4.5)

In particular p(v) = q, E(v) = Emin(q), and v ∈ Sq.

In the rest of the section we will assume that the hypotheses in Theorem 4.1 are satis�ed and
therefore the conclusion in Theorem 2-(v) holds. Thus, in the sequel, Emin is strictly subadditive
and Emin(q) <

√
2q, for all q > 0.

For the sake of clarity, we state �rst the following elementary lemma.

Lemma 4.2. Let (un) be a sequence as in Theorem 4.1. Then there is function u ∈ NE(R) such
that, up to a subsequence,

un → u, in L∞loc(R), (4.6)

u′n ⇀ u′, in L2(R), (4.7)

ηn := 1− |un|2 ⇀ η := 1− |u|2, in L2(R). (4.8)

In addition, E(u) ≤ Emin(q), and writing u = ρeiφ and un = ρne
iφn, the following relations hold,

up to a subsequence, for all A > 0,∫ A

−A
|u′|2 ≤ lim inf

n→∞

∫ A

−A
|u′n|2, (4.9)∫ A

−A
(W ∗ η)η = lim

n→∞

∫ A

−A
(W ∗ ηn)ηn, (4.10)∫ A

−A
ηφ′ = lim

n→∞

∫ A

−A
ηnφ

′
n. (4.11)

Proof. In view of (4.1), E(un) is bounded, so that, using also Lemma 2.1, we deduce that u′n
and that ηn := 1 − |un|2 are bounded in L2(R) and that un is bounded in L∞(R). Therefore,
by weak compactness in Hilbert spaces and the Rellich�Kondrachov theorem, there is a function
u ∈ H1

loc(R) such that, up to a subsequence, the convergences in (4.6)�(4.8) hold, as well as (4.9),
and also

‖u′‖L2(R) ≤ lim inf
n→∞

‖u′n‖L2(R). (4.12)

At this point we remark that the function B(f) =
∫
R(W∗f)f is continuous and convex in L2(R),

since Ŵ ≥ 0 a.e. Thus it is weakly lower semi-continuous, so that

B(u) ≤ lim inf
n→∞

B(un). (4.13)

Combing with (4.12), we deduce that E(u) ≤ Emin(q). Using (4.8) and the fact thatW ∈M2(R),
we get

W ∗ ηn ⇀W ∗ η in L2(R), (4.14)

which together with (4.6) lead to (4.10).

Since q ∈ (0, q∗), Theorem 2 and the fact that E(u) ≤ Emin(q) < Emin(q∗) imply that
u ∈ NE(R), so that we can write u = ρeiφ. Then, setting un = ρne

iφn and by using that Ek(un)
is bounded and (4.6), we get for A > 0,∫ A

−A
φ′2n ≤

1

inf
[−A,A]

|un|2
∫
R
ρ2
nφ
′2
n ≤

4

inf
[−A,A]

|u|2Ek(un),

so that, up to a subsequence, φ′n ⇀ φ′ in L2([−A,A]). Using again (4.6), we then establish
(4.11).
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Proof of Theorem 4.1. By hypothesis, we can assume that

E(un) ≤ 2Emin(q). (4.15)

Since Emin(q) <
√

2q, we have Σq ∈ (0, 1), so that applying Lemma 2.4 with L = 1 + Σq, and
Lemma 2.5 with E = 2Emin(q) and m0 = Σ̃q := Σq/L, we deduce that there exist an integer lq,
depending on E and q, but not on n, and points xn1 , x

n
2 , . . . , x

n
ln
, with ln ≤ lq such that

|1− |un(xnj )|2| ≥ Σ̃q, ∀1 ≤ j ≤ ln (4.16)

and

|1− |un(x)|2| ≤ Σ̃q, ∀x ∈ R \
ln⋃
j=1

[xnj − 1, xnj + 1]. (4.17)

Since the sequence (ln) is bounded, we can assume that, up to a subsequence, ln does not depend
on n and set l∗ = ln. Passing again to a further subsequence and relabeling the points (xnj )j if
necessary, there exist some integer `, with 1 ≤ ` ≤ l∗, and some number R > 0 such that

|xnk − xnj | −→n→∞∞, ∀1 ≤ k 6= j ≤ ` (4.18)

and

xnj ∈
`∪

k=1
B(xnk , R), ∀` < j ≤ l∗.

Hence, by (4.17), we deduce that

1− Σ̃q ≤ |un|2 ≤ 1 + Σ̃q, on R \
⋃̀
j=1

B(xnj , R+ 1). (4.19)

Applying Lemma 4.2 to the translated sequence un,j(·) = un(· + xnj ), we infer that there exist

functions vj = ρje
iφj ∈ NE(R), j ∈ {1, . . . , `}, satisfying the following convergences

un,j → vj , in L∞loc(R), (4.20)

u′n,j ⇀ v′j , in L2(R), (4.21)

ηn,j := 1− |un,j |2 ⇀ ηj := 1− |vj |2, in L2(R), (4.22)

as n→∞, and also

Emin(qj) ≤ E(vj) ≤ Emin(q), (4.23)∫ A

−A
|v′j |2 ≤ lim inf

n→∞

∫ A

−A
|u′n,j |2, (4.24)

lim
n→∞

∫ A

−A
(W ∗ ηn,j)ηn,j =

∫ A

−A
(W ∗ ηj)ηj , (4.25)

lim
n→∞

∫ A

−A
ηn,jφ

′
n,j =

∫ A

−A
ηjφ
′
j , (4.26)

where un,j = ρn,je
iφn,j and qj = p(vj). Moreover, using (4.16) and (4.20), we infer that

|1− |vj(0)|2| ≥ Σ̃q. (4.27)

In particular, vj cannot be a constant function of modulus one. Now we focus on proving the
following claim.
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Claim 1. There exist q̃ ∈ R and Ẽ ≥ 0 such that

Emin(q) ≥
∑̀
j=1

Emin(qj) + Ẽ and (4.28)

q =
∑̀
j=1

qj + q̃. (4.29)

For this purpose, we �x µ > 0. By the dominated convergence theorem, there exists

Rµ ≥ max

(
R+ 1,

1

µ

)
, (4.30)

such that, for 1 ≤ j ≤ `,
1

2

∫ Rµ

−Rµ
|v′j |2 ≥ Ekin(vj)−

µ

2`
. (4.31)

By (4.18), we can assume that B(xnk , Rµ) ∩ B(xnj , Rµ) = ∅, for all 1 ≤ k 6= j ≤ `. Hence, using
(4.24) and (4.31), we deduce that there exists Nµ ≥ 1, such that for all n ≥ Nµ and for all
1 ≤ k 6= j ≤ `,

1

2

∫ Rµ

−Rµ
|u′n,j |2 ≥ Ekin(vj)−

µ

`
. (4.32)

By adding the inequality (4.32) from j = 1 to j = `, we conclude that

1

2

∑̀
j=1

∫ Rµ

−Rµ
|u′n,j |2 ≥

∑̀
j=1

Ek(vj)− µ, for all n ≥ Nµ. (4.33)

Similarly, using again the dominated convergence theorem and possibly increasing Rµ, we obtain
for all 1 ≤ j ≤ `, ∣∣∣∣∣14

∫ Rµ

−Rµ
(W ∗ ηj)ηj − Ep(vj)

∣∣∣∣∣ ≤ µ

2`
. (4.34)

By (4.25), and increasing Nµ if necessary, we have for n ≥ Nµ,∣∣∣∣∣14
∫ Rµ

−Rµ
(W ∗ ηj)ηj −

1

4

∫ Rµ

−Rµ
(W ∗ ηn,j)ηn,j

∣∣∣∣∣ ≤ µ

2`
. (4.35)

Combining (4.34), (4.35) and adding from j = 1 to j = `, we deduce that∣∣∣∣∣∣14
∑̀
j=1

∫ Rµ

−Rµ
(W ∗ ηn,j)ηn,j −

∑̀
j=1

Ep(vj)

∣∣∣∣∣∣ ≤ µ, for all n ≥ Nν . (4.36)

Applying the same argument to ηn,jφ
′
n,j and ηjφ

′
j instead of (W ∗ ηn,j)ηn,j and (W ∗ ηj)ηj , we

get ∣∣∣∣∣∣12
∑̀
j=1

∫ Rµ

−Rµ
ηn,jφ

′
n,j −

∑̀
j=1

qj

∣∣∣∣∣∣ ≤ µ. (4.37)

Now we handle the integrals on

Aµ := R \
⋃̀
j=1

B(xnj , Rµ).

30



Let us start with the momentum. We split p(un) as

p(un) =
1

2

∑̀
j=1

∫ Rµ

−Rµ
ηn,jφ

′
n,j + pAµ(un), with pAµ(un) :=

1

2

∫
Aµ
ηnφ

′
n. (4.38)

By (2.3), (2.11), (4.15) and (4.19), we obtain

√
2|pAµ(un)| ≤ 1

4

∫
Aµ
η2
n +

1

2(1− Σ̃q)

∫
Aµ
ρ2
nφ
′2
n ≤ C(q).

Hence, pAµ(un) is is uniformly bounded with respect to n and µ, so that, passing possibly to a
subsequence (in n and µ), we infer that there exists q̃ ∈ R such that

lim
µ→0

lim
n→∞

pAµ(un) = q̃. (4.39)

Hence, passing to the limit n→∞ and then letting µ→ 0 in (4.37), and using (4.38), we obtain
(4.29). To prove (4.28), we �rst remark that since Ek(un) and Ep(un) are bounded, passing
possibly to a subsequence, there are constants Ek, Ẽk, Ep ≥ 0 such that Emin(q) = Ek + Ep,

Ek(un)→ Ek, Ep(un)→ Ep,

and

lim
µ→0

lim
n→∞

1

2

∫
Aµ
|u′n|2 = Ẽk.

Thus, decomposing the kinetic part as

Ek(un) =
1

2

∫
Aµ
|u′n|2 +

1

2

∑̀
j=1

∫ Rµ

−Rµ
|u′n,j |2,

and using (4.33), we deduce as before that

Ek ≥
∑̀
j=1

Ek(vj) + Ẽk. (4.40)

To prove (4.28), it remains to study the potential energy. However, Ep(u) is more involved
because of the nonlocal interactions. To make the decomposition, we introduce the functions

gn,µ(x) := ηn(x)1 `
∪
j=1

B(xnj ,Rµ)
(x) and fn,µ(x) := ηn(x)1Aµ(x),

so that

Ep(un) =
1

4

∫
R

(W ∗ ηn)(fn,µ + gn,µ) =
1

4

∫
R

(W ∗ ηn)fn,µ +
1

4

∫
`
∪
j=1

B(xnj ,Rµ)
(W ∗ ηn)ηn

=
1

4

∫
R

(W ∗ gn,µ)fn,µ +
1

4

∫
R

(W ∗ fn,µ)fn,µ +
1

4

∑̀
j=1

∫ Rµ

−Rµ
(W ∗ ηn,j)ηn,j . (4.41)

Using Plancherel's identity, the Cauchy�Schwarz inequality and (2.3), we deduce that∣∣∣∣∫
R

(W ∗ gn,µ)fn,µ

∣∣∣∣ ≤ ‖Ŵ‖L∞(R)‖gn,µ‖L2(R)‖fn,µ‖L2(R) ≤ C(Emin(q)),
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and the same argument shows that
∫
R(W ∗ fn,µ)fn,µ can also be bounded in terms of Emin(q).

Passing possibly to a subsequence, we conclude that there exists Ẽp ≥ 0 such that

lim
µ→0

lim
n→∞

∫
R

(W ∗ fn,µ)fn,µ = 4Ẽp. (4.42)

We will show that

lim
µ→0

lim
n→∞

∫
R

(W ∗ gn,µ)fn,µ = 0. (4.43)

Assuming (4.43), we can now establish inequality (4.28). Indeed, letting n→∞ and then µ→ 0
in (4.41), and using (4.42) and (4.43), we obtain

lim
µ→0

lim
n→∞

1

4

∑̀
j=1

∫ Rµ

−Rµ
(W ∗ ηn,j) ηn,j

 = Ep − Ẽp.

Combining with (4.36), we have

Ep =
∑̀
j=1

Ep(vj) + Ẽp. (4.44)

Therefore, setting
Ẽ := Ẽk + Ẽp = lim

µ→0
lim
n→∞

EAµ(un), (4.45)

and bearing in mind that Emin(q) = Ek+Ep and that E(vj) ≥ Emin(qj), inequality (4.28) follows
by adding (4.40) and (4.44).

It remains to show (4.43). By de�nition of gn,µ, we obtain∫
R

(W ∗ fn,µ)(x)gn,µ(x)dx =
∑̀
j=1

∫
B(xnj ,Rµ)

(W ∗ fn,µ) (x)ηn(x)dx

=
∑̀
j=1

∫
B(0,Rµ)

(W ∗ fn,µ) (x+ xnj )ηn,j(x)dx.

Using also (2.10) and the fact that convolution commutes with translations, we get∫
R

(W ∗ gn,µ)(x)fn,µ(x)dx =
∑̀
j=1

∫
R\

`
∪
k=1

B(xnk−x
n
j ,Rµ)

(
W ∗ (ηn,j1B(0,Rµ))

)
(x)ηn,j(x)dx.

Noticing that B(0, Rµ) is a subset of ∪`k=1B(xnk − xnj , Rµ), we conclude that∣∣∣∣∫
R

(W ∗ gn,µ)fn,µ

∣∣∣∣ ≤ ∑̀
j=1

∫
R\B(0,Rµ)

∣∣W ∗ (ηn,j1B(0,Rµ))
∣∣ |ηn,j |. (4.46)

To study the limit of the right-hand side of (4.46), we �rst remark that (4.20) and the fact that
W ∈M2(R) imply that

W ∗ (ηn,j1B(0,Rµ))→W ∗ (ηj1B(0,Rµ)) in L2(R), (4.47)

as n → ∞. At this point we also notice that (4.20) and the same argument leading to (4.22),
also give us that |ηn,j |⇀ |ηj | in L2(R). Combining with (4.47), we thus get∫

R\B(0,Rµ)

∣∣W ∗ (ηn,j1B(0,Rµ))

∣∣ |ηn,j | → ∫
R\B(0,Rµ)

∣∣W ∗ (ηj1B(0,Rµ))
∣∣ |ηj |,

32



as n→∞. Finally, by the Cauchy�Schwarz inequality,∫
R\B(0,Rµ)

∣∣W ∗ ηj1B(0,Rµ)

∣∣ |ηj | ≤ ‖W‖2‖ηj‖L2(R)‖ηj‖L2(R\B(0,Rµ), (4.48)

so that the de�nition of Rµ in (4.30) and the dominated convergence theorem allow us to conclude
that the right-hand side of (4.48) goes to 0 as µ → 0. In view of (4.46) and (4.48), this proves
(4.43), completing the proof of Claim 1.

Now we establish an inequality between q̃ and Ẽ that will be key to conclude that both
quantities are equal to zero.

Claim 2. We have √
2
(

1− Σ̃q

)
|q̃| ≤ Ẽ. (4.49)

This inequality is a consequence of Lemma 2.3. To choose our cut-o� function, we take the
sequence µm = 1/m, and we notice that since lim |vj(x)| → 1 as |x| → ∞, there exists Rj > 0
such that, for every |x| ≥ Rj , we have

|ηj(x)| ≤ e−2/µm . (4.50)

Moreover, without loss of generality we can assume that Rm := Rµm ≥ Rj , for all 1 ≤ j ≤ `.
Now we use the function χ given by Lemma A.1 to de�ne

χj,n(x) := χ(x− xnj ) =

{
1 if |x− xnj | ≤ Rm,
0 if |x− xnj | ≥ Rm + µm,

and χ̃n,m := 1−
∑̀
j=1

χj,n.

To establish (4.49), we apply Lemma 2.3 with u = un, Ω = Aµm , ε = Σ̃q and χΩ,Ω0 = χ̃n,m,
where Ω0 is given by

Ω \ Ω0 =
⋃̀
j=1

[xnj −Rm − µm, xnj −Rm] ∪ [xnj +Rm, x
n
j +Rm + µm].

Using (4.19), the de�nitions of q̃ and Ẽ in (4.39) and (4.45), and letting n→∞ and m→∞ in
(2.13), we obtain

√
2|q̃| ≤ Ẽ

1− Σ̃q

+ lim
m→∞

lim sup
n→∞

∆n,m,

with

|∆n,m| ≤ C(q)
(
‖ηn‖L2(Ω\Ω0) + ‖ηnχ̃′n,µm‖L2(Ω\Ω0) + ‖ηnχ̃′n,µm‖2L2(Ω\Ω0)

)
. (4.51)

Notice that we omit the dependence on m and n in Ω \Ω0 for notational simplicity. Therefore,
to prove (4.49) we only need to show that the right-hand side of (4.51) goes to zero. For the �rst
term, we have

‖ηn‖2L2(Ω\Ω0) =
∑̀
j=1

(∫ −Rm
−Rm−µm

η2
n,j +

∫ Rm+µm

Rm

η2
n,j

)
.

Using (4.6) and the dominated convergence theorem, we get

lim
m→∞

lim sup
n→∞

‖ηn‖2L2(Ω\Ω0) = lim
m→∞

∑̀
j=1

(∫ −Rm
−Rm−µm

η2
j +

∫ Rm+µm

Rm

η2
j

)
= 0. (4.52)
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To bound the term ‖ηnχ̃′n,µm‖L2(Ω\Ω0) in (4.51), we notice that

(
χ̃′n,µm

)2
=
(∑̀
j=1

χ′j,n

)2
=
∑̀
j=1

(χ′j,n)2,

since χ′j,nχ
′
k,n = 0 for all j 6= k. Hence,

‖ηnχ̃′n,µm‖2L2(Ω\Ω0) ≤
∑̀
j=1

∫
R
η2
n|χ′j,n|2

≤
∑̀
j=1

(∫ −Rm
−Rm−µm

η2
n,j |χ′|2 +

∫ Rm+µm

Rm

η2
n,j |χ′|2

)
.

Invoking again (4.6), we obtain

lim sup
n→∞

‖ηnχ̃′n,µm‖2L2(Ω\Ω0) ≤
∑̀
j=1

(∫ −Rm
−Rm−µm

η2
j |χ′|2 +

∫ Rm+µm

Rm

η2
j |χ′|2

)
≤ 32`e−4µm,

where we have used (4.50) and that |χ′(x)| ≤ 4e−2e
2
µm for the last inequality. Then, we conclude

that
lim
m→∞

lim sup
n→∞

‖ηnχ′n,µm‖L2(Ω\Ω0) = 0. (4.53)

Combining (4.52) and (4.53), we obtain

lim
m→∞

lim sup
n→∞

∆n,µm = 0,

which completes the proof of Claim 2.

Claim 3. We have Ẽ = q̃ = 0 and ` = 1.

We suppose �rst that q̃ > 0. By de�nition of Σq in (2.21), and using that Σ̃q = Σq/L < Σq,
we have

Emin(q)

q
=
√

2(1− Σq) <
√

2
(

1− Σ̃q

)
. (4.54)

In addition, since Emin is concave, we obtain for all 0 < p < q,

Emin(p) ≥ p
Emin(q)

q
= p
√

2(1− Σq). (4.55)

Then, setting s := q− q̃ =
∑̀
j=1

qj , the assumption q̃ > 0 implies that s < q, and combining with

(4.49), (4.54) and (4.55), we also obtain

Emin(s) ≥ s
Emin(q)

q
= Emin(q)− q̃

Emin(q)

q
> Emin(q)−

√
2q̃
(

1− Σ̃q

)
≥ Emin(q)− Ẽ.

Hence, using (4.28), we get

Emin(s) >
∑̀
j=1

Emin(qj). (4.56)
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Since Emin is even, nondecreasing and subadditive, the inequality s ≤∑`
j=1 |qj | yields

Emin(s) ≤ Emin

(∑̀
j=1

|qj |
)
≤
∑̀
j=1

Emin(qj).

which contradicts (4.56). Thus q̃ ≤ 0 and (4.29) gives q ≤∑`
j=1 |qj |. As before, this implies that

Emin(q) ≤ Emin

(∑̀
j=1

|qj |
)
≤
∑̀
j=1

Emin(qj).

On the other hand, since Ẽ ≥ 0, we see from (4.28) that

Emin(q) ≥
∑̀
j=1

Emin(qj).

Therefore

Emin(q) =
∑̀
j=1

Emin(qj). (4.57)

In view of (4.28) and (4.49), (4.57) yields Ẽ = 0 and q̃ = 0. Finally, if there are at least two
nonzero values qk and qm, with 1 ≤ k 6= m ≤ `, then the strictly subadditivity of Emin implies
that

Emin(q) = Emin

(∑̀
j=1

|qj |
)
<
∑̀
j=1

Emin(qj),

contradicting (4.57). Therefore we can suppose without loss of generality that ` = 1, which
�nishes the proof of Claim 3.

Setting v = v1, the convergence in (4.2) and the estimate in (4.5) follow from (4.20) and
(4.19) (with ` = 1). We now show the convergences in (4.3) and (4.4) (with v = v1) to complete
the proof of the theorem. Indeed, since ` = 1 and q̃ = 0, by Claim 3, (4.29) shows that q = q1,
and using also (4.1) and (4.23), we get

p(un,1)→ q = p(v) and E(un,1)→ Emin(q) = E(v). (4.58)

We now establish (4.4). Since u′n,1 ⇀ v′ in L2(R), it is enough to prove that

lim sup
n→∞

‖u′n,1‖L2(R) ≤ ‖v′‖L2(R). (4.59)

Arguing by contradiction, taking a subsequence that we still denote by un,1, we suppose that

M := lim
n→∞

‖un,1‖2L2(R) = 2Ek(un,1), with M > ‖v′‖2L2(R) = 2Ek(v).

Hence, using (4.58),

lim
n→∞

Ep (un,1) = lim
n→∞

(
E(un,1)− Ek(un,1)

)
= E(v)− M

2
< E(v)− Ek(v) = Ep(v),

which contradicts (4.13). Therefore u′n,1 → v′ in L2(R). In particular Ek(un,1)→ Ek(v), so that
(4.58) implies that

lim
n→∞

∫
R

(W ∗ ηn,1) ηn,1 =

∫
R

(W ∗ η) η, (4.60)

35



where η = 1− |v|2 as usual. Using Plancherel's identity and (H2), we have

‖ηn,1 − η‖2L2(R) ≤
1

2π

∫
R
Ŵ(ξ)|η̂n,1 − η̂|2 +

1

4π

∫
R
ξ2|η̂n,1 − η̂|2

=

∫
R
W ∗ (ηn,1 − η)(ηn,1 − η) +

1

4
‖η′n − η′‖2L2(R). (4.61)

Since W ∈M2(R), it follows from (4.22) and (4.60) that∫
R
W ∗ (ηn,1 − η)(ηn,1 − η)→ 0. (4.62)

It remains to prove that
‖η′n,1 − η′‖L2(R) → 0. (4.63)

Noticing that η′ − η′n,1 = 2(〈v, v′〉 − 〈un,1, u′n,1〉), we have

‖η′n,1 − η′‖L2(R) ≤ 2‖(v − un,1)v′1‖L2(R) + 2‖(v′ − u′n,1)un,1‖L2(R). (4.64)

From inequality (2.2), we obtain
‖un,1‖L∞(R) ≤ C(q). (4.65)

Thus, using (4.4), we deduce that

‖(v′ − u′n,1)un,1‖L2(R) ≤ C(q)‖v′ − u′n,1‖L2(R) → 0,

Moreover, (4.65) allows us to use the dominated convergence theorem to infer that the other
term in the right-side of (4.64) also converges to zero. Therefore, combining with (4.61) and
(4.62), we obtain (4.3), which �nishes the proof of the theorem.

5 Stability

We start recalling the following result concerning the Cauchy problem.

Theorem 5.1 ([28]). Let φ0 ∈ E(R), with ∇φ ∈ H2(R) ∩ C(R). Let W ∈ M3(R) be an even
distribution. Assume that one of the following is satis�ed.

(i) W ∈M1(R) and W ≥ 0 in a distributional sense.

(ii) There exists σ > 0 such that Ŵ ≥ σ a.e. on R.

Then, for every w0 ∈ H1(R) there exists a unique solution Ψ ∈ C(R, φ0 +H1(R)) to (NGP) with
the initial condition Ψ0 = φ0 +w0. Moreover, the energy is conserved, as well as the momentum
as long as infx∈R |Ψ(x, t)| > 0.

In the case (ii), we also have the growth estimate

‖Ψ(t)− φ0‖L2(R) ≤ C|t|+ ‖Ψ0 − φ0‖L2(R), (5.1)

for any t ∈ R, where C is a positive constant that depends only on E(Ψ0), ‖Ŵ‖L∞ , φ0 and σ.

Let us remark that the author in [28] uses a sightly di�erent de�nition of the momentum
to allow a possible vanishing of Ψ(t). However, the proof of the conservation of momentum in
[28] also applies to our renormalized momentum as long as Ψ(t) ∈ NE(R). We also notice that
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other statements for Cauchy problem for the Gross�Pitaevskii equation have been established in
di�erent topologies when W = δ0 (see e.g. [61, 35, 33, 10, 31, 30] and the reference there in),
and these results can probably be adapted to our nonlocal framework.

For the proof of Theorem 5.1, the author proves �rst a local well-posedness result for W ∈
M3(R). Then conditions (i) and (ii) are used to show that the solution is global. In [28], it is also

established that the solution is global in dimensions greater than 1, provided that Ŵ ≥ σ > 0
a.e. However, the proof given by the author does not apply in the one-dimensional case. Using
Lemma 2.1, we can partially �ll this gap.

Theorem 5.2. Let φ0 and W as in Theorem 5.1, but instead of (i) or (ii), we assume that there
exists κ ≥ 0 such that

Ŵ(ξ) ≥ (1− κξ2)+, a.e. on R. (5.2)

Then we have the same conclusion as in Theorem 5.2, including the growth estimate (5.1), with
a constant C depending only on E(Ψ0), ‖Ŵ‖L∞ , φ0 and κ.

Proof. In view of the local well-posedness established in Theorem 1.10 in [28], to prove that the
solution is global, we only need to show that the solution Ψ(t) = φ0 +w(t) de�ned (Tmin, Tmax),
satis�es Tmax = ∞ and Tmin = −∞. In view of the blow-up alternative in the mentioned
theorem, it is su�cient to prove that ‖w(t)‖L2(R) remains bounded in any bounded interval of
(Tmin, Tmax). Indeed, from (NGP), we have (see equation (63) in [28])

1

2

∣∣∣∣ ddt‖w(t)‖2L2(R)

∣∣∣∣ ≤ ‖φ′′0‖L2(R)‖w(t)‖L2(R) + ‖φ0‖L∞(R)

∫
R
|W ∗ (1− |u(t)|2)| |w(t)| dx

≤ ‖φ′′0‖L2(R)‖w(t)‖L2(R) + ‖φ0‖L∞(R)‖Ŵ‖L∞(R)‖η(t)‖L2(R)‖w(t)‖L2(R),

where η(t) = 1 − |u(t)|2. From Lemma 2.1, we deduce from the conservation of energy on
(Tmin, Tmax), that there exists a constant K > 0, depending on κ and E(Ψ0), such that

‖η(t)‖L2(R) ≤ K, for all t ∈ (Tmin, Tmax).

Therefore, we have for any δ > 0,

1

2

∣∣∣∣ ddt(‖w(t)‖2L2(R) + δ)

∣∣∣∣ ≤ (‖w(t)‖2L2 + δ)
1
2

(
‖φ′′0‖L2(R) +K‖Ŵ‖L∞(R)‖φ0‖L∞(R)

)
.

Dividing by (‖w(t)‖2L2(R)+δ)
1
2 , integrating and letting δ → 0, we obtain (5.1), for any t ∈ (Tmin, Tmax).

As mentioned above, this estimate implies that the solution is global.

As explained in Section 6 in [28], Theorem 5.2 allows us to show that the solutions in the
energy space are global.

Theorem 5.3. Assume that W ∈ M3(R) is an even distribution satisfying (5.2). Then for
every Ψ0 ∈ E(R), there exists a unique Ψ ∈ C(R, E(R)) global solution to (NGP) with the
initial condition Ψ0. Moreover, the energy is conserved, as well as the momentum as long as
infx∈R |Ψ(x, t)| > 0.

Proof of Theorem 3. In view of Remark 2.2, we deduce if W ∈ M3(R) is an even distribution,

with Ŵ ≥ 0 a.e. on R, and Ŵ of class C2 in a neighborhood of the origin, then W satis�es (5.2),
for some κ ≥ 0. Therefore, we can apply Theorem 5.3 and the conclusion follows.

The rest of the section is devoted to prove that the set Sq is orbitally stable in the energy
space. Using the Cazenave�Lions approach [22] and Theorem 4.1, we obtain the following result.
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Theorem 5.4. Assume that W ∈ M3(R) satis�es (H1) and (H2). Suppose also that Emin is
concave on R+. Then, Sq is orbitally stable for (E(R), d) and for (E(R), dA), for all q ∈ (0, q∗).
Moreover, for all Ψ0 ∈ E(R) and for all ε > 0, there exists δ > 0 such that if

d(Ψ0,Sq) ≤ δ, then sup
t∈R

inf
y∈R

dA(Ψ(· − y, t),Sq) ≤ ε, (5.3)

where Ψ(t) is the solution of (NGP) associated with the initial condition Ψ0.

Notice that for u, v ∈ E(R), we have d(u, v) ≤ dA(u, v), and thus

d(u,Sq) = inf
y∈R

d(u(· − y),Sq) ≤ inf
y∈R

dA(u(· − y),Sq).

Therefore, the implication in (5.3) shows the orbital stability for the distance d and dA.

In order to prove Theorem 5.4, we will use the following lemma.

Lemma 5.5. Let vn, v ∈ E(R) such that d(vn, v)→ 0. Then,

‖|vn| − |v|‖L∞(R) → 0 and ‖|vn|2 − |v|2‖L2(R) → 0. (5.4)

In particular, we have the continuity of the energy E(vn)→ E(v) (with respect to d). In addition,
if vn, v ∈ NE(R), then we also have the continuity of the momentum p(vn)→ p(v).

Proof. First, we remark that since d(vn, v)→ 0, there is some M > 0 such that

‖v′n‖L2(R) + ‖v′‖L2(R) + ‖vn‖L2(R) + ‖v‖L2(R) ≤M,

for all n ∈ N. By the sharp Gagliardo�Nirenberg interpolation inequality and using that ||w|′| =
|w′|, for w ∈ H1

loc(R), we have

‖|vn| − |v|‖L∞(R) ≤ ‖|vn| − |v|‖L2(R)‖|vn|′ − |v|′‖L2(R) ≤ 2M‖|vn| − |v|‖L2(R),

so the �rst convergence in (5.4) follows. Similarly, we deduce the second one noticing that

‖|v|2 − |vn|2‖L2(R) ≤
(
‖v‖L∞(R) + ‖vn‖L∞(R)

)
‖|v| − |vn|‖L2(R) ≤ 2M‖|vn| − |v|‖L2 .

Therefore (5.4) is proved. In particular, we have vn → v in L2(R) and ηn = 1−|vn|2 → η = 1−|v|2
in L2(R), so that E(vn) → E(v). For the momentum, writing vn = |vn|eiθn as usual, we have
p(vn) = 1

2

∫
R ηnθ

′
n, so it su�ces to prove that θn ⇀ θ in L2(R) to conclude that p(vn) → p(v),

where v = |v|eiθ. To establish the weak convergence of θn, we notice that since |vn| → |v| in
L∞(R), there exists C > 0 such that

inf
R
|vn| ≥ C, for all n ∈ N.

Hence, ∫
R
θ′2n ≤

1

C2

∫
R
ρ2
nθ
′2
n ≤

2

C2
E(vn).

Since E(vn) is bounded, we conclude as in Lemma 4.2 that for a subsequence, θ′nk ⇀ θ′ in L2(R),
as k → ∞. Therefore, we conclude that p(vnk) → p(v). Since the limit does not depend on the
subsequence, we deduce that p(vn)→ p(v).
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Proof of Theorem 5.4. Arguing by contradiction, we suppose that there exist ε0 > 0, (δn), (tn)
and (un0 ) ⊂ E(R) such that δn → 0,

d(un0 ,Sq) < δn (5.5)

and
inf
y∈R

dA(un(· − y, tn),Sq) ≥ ε0, (5.6)

where un denotes the solution to (NGP) with initial data un0 . In particular, from (5.5) we deduce
that there is vn ∈ Sq such that

d(un0 , vn) < 2δn. (5.7)

Since E(vn) = Emin(q) and p(vn) = q, applying Theorem 4.1 to (vn), we infer that there exists
v ∈ Sq and points (an) such that, up to a subsequence, the function ṽn(x) = vn(x+ an) satis�es

ṽn → v, in L∞loc(R), and 1− |ṽn|2 → 1− |v|2, ṽ′n → v′ in L2(R). (5.8)

Using also the estimate (4.5) in Theorem 4.1, we conclude that

‖|ṽn| − |v|‖L2(R) ≤
1

ν + infR |v|
‖|ṽn|2 − |v|2‖L2(R) → 0,

so that
d(ṽn, v)→ 0, (5.9)

and also dA(ṽn, v)→ 0. On the other hand, by the triangle inequality and (5.7),

d(un0 (·+ an), v) ≤ d(un0 (·+ an), ṽn) + d(ṽn, v) < 2δn + d(ṽn, v).

Combining with (5.9), we conclude that d(un0 (· + an), v) → 0. Applying the conservation of
energy in Theorem 5.3 and Lemma 5.5, we thus get, for all t ∈ R,

E(un(t)) = E(un0 ) = E(un0 (·+ an))→ E(v) = Emin(q). (5.10)

At this point we claim that

inf
R
|un(t)| > 0, for all |t| ≤ |tn|. (5.11)

Otherwise, there are values sn, with |sn| ≤ |tn|, such that infR |un(sn)| = 0. By (5.10), we
conclude that E(un(sn)) → Emin(q) and thus, using that Emin is strictly increasing on (0, q∗),
we can �nd n0 such that E(un(sn)) < Emin(q∗), for all n ≥ n0. This is a contradiction because,
by Theorem 2, this implies that un(sn) ∈ NE(R).

In view of (5.11), we can proceed as before invoking the conservation of momentum in The-
orem 5.3 and Lemma 5.5, to obtain

p(un(tn)) = p(un0 ) = p(un0 (·+ an))→ p(v) = q. (5.12)

By (5.10) and (5.12), we can apply Theorem 4.1 to (un(tn)). Then, reasoning as before, we
deduce that there exist w ∈ Sq and (bn) such that, up to a subsequence,

dA(un(·+ bn, tn), w(·))→ 0, (5.13)

which contradicts (5.6).
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6 Euler�Lagrange equations and proof of Theorem 4

In this section we establish the Euler�Lagrange equations associated with the minimization prob-
lem, which will allow us to complete the proof of Theorem 4. Since the energy and momentum
functional are not de�ned on a vector space, the notion of di�erential is not trivial. For our pur-
poses, it su�ces consider the directional derivatives using only smooth functions with compact
support. More precisely, for u ∈ E(R) we de�ne

dE(u)[h] := lim
t→0

E(u+ th)− E(u)

t
and dp(u)[h] := lim

t→0

p(u+ th)− p(u)

t
,

for all h ∈ C∞c (R), where we also suppose that u ∈ NE(R) for the de�nition of dp(u) so that
p(u+ th) is actually well de�ned for t small enough.

Lemma 6.1. Assume that W satis�es (H1). Then for all h ∈ C∞c (R), we have

dE(u)[h] =

∫
R
〈u′, h′〉 −

∫
R
W ∗ (1− |u|2)〈u, h〉, if u ∈ E(R), (6.1)

dp(u)[h] =

∫
R
〈ih′, u〉, if u ∈ NE(R). (6.2)

In particular, for all c ∈ R, dE(u) = c dp(u) if and only if u satis�es (TWW,c).

Notice that the elliptic regularity theory shows that if u is a solution of (TWW,c), then u is
smooth. More precisely, the following result stated in higher dimensions in [29] applies without
changes in dimension 1.

Lemma 6.2 ([29]). Let u ∈ E(R) be a solution of (TWW,c), with W ∈ M2(R). Then u is
bounded and of class C∞(R). Moreover, η := 1− |u|2 and ∇u belong to W k,p(R), for all k ∈ N
and for all p ∈ [2,∞).

Proof of Lemma 6.1 . Using (2.10), the di�erential in (6.1) is a straightforward consequence of
the de�nition of dE. To show (6.2), let us �x u ∈ NE(R) and h ∈ C∞c (R). Then

dp(u)[h] =
d

dt
p(u+ th)

∣∣∣∣
t=0

=
1

2

∫
R
〈ih′, u〉

(
1− 1

|u|2
)

+
1

2

∫
R
〈iu′, h〉

(
1− 1

|u|2
)

+

∫
R
〈iu′, u〉

(〈u, h〉
|u|4

)
=

∫
R
〈iu′, h〉

(
1− 1

|u|2
)
−
∫
R

〈ih, u〉〈u′, u〉
|u|4 +

∫
R

〈iu′, u〉〈u, h〉
|u|4 .

Therefore we obtain (6.2) noticing that

−〈ih, u〉〈u, u′〉+ 〈iu′, u〉〈u, h〉 = 〈iu′, h〉|u|2.

The last assertion in the statement follows from the fact that if for some v ∈ E(R) we have∫
R〈v, h〉 = 0, for all h ∈ C∞c (R), then v ≡ 0.

Theorem 6.3. Suppose that Emin is concave on R+ and that u ∈ Sq, with q > 0. Then there
exists cq satisfying

E+
min(q) ≤ cq ≤ E−min(q), (6.3)

such that u is a solution of (TWW,c) with of speed c = cq.
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Proof. Let u ∈ Sq, so that p(u) = q and E(u) = Emin(q). Notice that since q > 0, u is not a
constant function. Let h ∈ C∞c (R). From the de�nition of Emin we have, for all t > 0,

E(u+ th)− E(u)

t
≥ Emin(p(u+ th))− Emin(q)

t
.

If dp(u)[h] > 0, then p(u + th) ≥ p(u) = q for t > 0 small enough, so that letting t → 0+, we
obtain

dE(u)[h] ≥ E+
min(q)dp(u)[h].

Likewise, if dp(u)[h] < 0, we get

dE(u)[h] ≥ E−min(q)dp(u)[h].

Replacing h by −h, we obtain the following inequalities

E+
min(q)dp(u)[h] ≤ dE(u)[h] ≤ E−min(q)dp(u)[h], if dp(u)[h] > 0, (6.4)

and
E−min(q)dp(u)[h] ≤ dE(u)[h] ≤ E+

min(q)dp(u)[h], if dp(u)[h] < 0. (6.5)

Since the functionals dp(u), dE(u) : C∞c (R) → R are linear, to establish the Euler�Lagrange
equations, it is enough to show that

Ker dp(u) ⊂ Ker dE(u). (6.6)

Indeed, by Lemma 3.2 in [19], this implies that there exists some cq ∈ R such that

dE(u) = cqdp(u), (6.7)

and therefore, by Lemma 6.1, u is a solution of (TWW,c) with c = cq

To prove (6.6), let us consider φ ∈ Ker dp(u). Since u is nonconstant, there exists some
function ψ ∈ C∞c (R) such that dp(u)[ψ] 6= 0. Thus, for all n ∈ N, we have

dp(u)[ψ + nφ] = dp(u)[ψ] 6= 0.

From (6.4) and (6.5), we conclude that dE(u)[ψ + nφ] = dE(u)[ψ] + ndE(u)[φ] is bounded.
Hence dE(u)[φ] = 0 i.e. φ ∈ Ker dE(u), which establishes (6.6).

It remains to show (6.3). Let h0 ∈ C∞c (R) such that dp(u)[h0] = 1. Then (6.7) implies that
dE(u)[h0] = cq. It follows from (6.4) that

E+
min(q) ≤ cq ≤ E−min(q), (6.8)

which �nishes the proof.

Remark 6.4. It is possible to establish the Euler�Lagrange equations using an argument based
on the implicit function theorem, without invoking the concavity of Emin. Even thought the
former argument is more general, we gave the proof using the concavity because it is simpler.

Proof of Theorem 4. Combining Theorems 4.1, 5.4 and 6.3, we obtain that the set Sq is nonempty,
orbitally stable and that any u ∈ Sq is a solution of (TWW,c). Using (6.3) and Theorem 2-(v),
we get the properties for cq, except that cq > 0. Arguing by contradiction, we suppose that there
exists p ∈ (0, q∗) such that cp = 0. Thus, by (9) and (10), we get E+

min(p) = 0. Since Emin is
concave, we have for all r < s,

E−min(r) ≥ E+
min(r) ≥ E−min(s) ≥ E+

min(s) ≥ 0,

which implies that E−min = E+
min = 0 on [p,∞), so that Emin is constant on [p,∞), which

contradicts that Emin is strictly increasing on [p, q∗). This completes the proof of the theorem.
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7 Some numerical simulations

In this section, we numerically illustrate the properties of the minimizing curve through some
simulations. The numerical method is based on the projected gradient descent and the convo-
lution is computed by the fast Fourier transform algorithm. Given W (or Ŵ) and some q > 0
close to 0, we compute the corresponding soliton uq (i.e. p(uq) = q) and its energy E(uq). We
then increase the value of q > 0 until we obtain enough points to plot Emin.

First, we show our results for the examples (i) and (ii) in Section 1. In Figures 2 and 3, we
can see Emin and the modulus of the solitons associated with q = 0.05, q = 0.55, q = 1.1 and
q = 1.5, for the potentials

Wα,β =
β

β − 2α
(δ0 − αe−β|x|), (7.1)

with α = 0.05, β = 0.15, and

Wα =
1

1− α
(
δ0 +

3α

π
ln(1− e−π|x|)

)
, (7.2)

with α = 0.8. In both cases, we observe that Emin is concave and that the line
√

2q is a tangent
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Figure 2: Curve Emin and solitons for the potential in (7.1), with α = 0.05 and β = 0.15.

to the curve. We notice that the shapes of the solitons in Figure 3 and the solitons in Figure 1
are quite similar. On the other hand, the solitons in Figure 2 are very di�erent, they have values
greater than 1 and exhibit a bump on R+. Notice also that the curves Emin for both potentials
seem to be constant for q > 1.55.

We end this section showing some numerical simulations for two interesting potentials. The
�rst one has been proposed in [58] as simple model for interactions in a Bose�Einstein condensate.
It is given by a contact interaction δ0 and two Dirac delta functions centered at ±σ,

Wσ = 2δ0 −
1

2
(δσ + δ−σ) . (7.3)

Noticing that Ŵσ(ξ) = 2− cos(σξ), we see that for σ > 0, Wσ ful�lls (H1), (H2), and that Ŵσ is
analytic in C, but is exponentially growing on H. Thus, Wσ does not satisfy the assumption (5)
in (H3). We can also check that (H3') is not ful�lled. Nevertheless, the results of the simulation
depicted in Figure 4 show that Emin is concave, and in that case Theorem 4 gives the orbital
stability of the solitons illustrated in Figure 4.
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Figure 3: Curve Emin and solitons for the potential in (7.2), with α = 0.8.
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Figure 4: Curve Emin and solitons for the potential in (7.3), with σ = 10.

Finally, we consider the potential

Ŵa,b,c(ξ) = (1 + aξ2 + bξ4)e−cξ
2
, (7.4)

that it has been proposed in [9, 57] to describe a quantum �uid exhibiting a roton-maxon spec-
trum such as Helium 4. Indeed, as predicted by the Landau theory, in such a �uid, the dispersion
curve (3) cannot be monotone and it should have a local maximum and a local minimum, that
are the so-called maxon and roton, respectively. In Figure 5, we see the dispersion curve asso-
ciated with potential (7.4), with a = −36, b = 2687, c = 30. In this case, there is a maxon at
ξm ∼ 0.33 and a roton at ξr ∼ 0.53. For these values, (H1) is satis�ed, but not (H2) nor (H3').
However, we observe in Figure 6 that the energy curve is still concave, and that the straight line√

2q is still a tangent to the curve. Moreover, we found the same critical value as before for the
momentum, i.e. q∗ ∼ 1.55.
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ξm ∼ 0.33 and ξr ∼ 0.53.

0 0.5 1 1.5 2
0

0.5

1

√
2q

q

Emin(q)

−30 −20 −10 0 10 20 30

0.2

0.4

0.6

0.8

1

1.2

x

|uq(x)|

q = 0.05

q = 0.55

q = 1.1

q = 1.5

Figure 6: Curves Emin and solitons for the potential in (7.4), with a = −36, b = 2687, c = 30.

A Appendix

Lemma A.1. Let R > 0 and µ > 0. There exists a function χ ∈ C∞c (R) such that for all x ∈ R,
0 ≤ χ(x) ≤ 1,

χ(x) =

{
1, if |x| ≤ R,
0, if |x| ≥ R+ µ,

and |χ′(x)| ≤ 4e−2e
2
µ . (A.1)

Proof. Let

f(x) :=

{
exp(− 1

x), if x ≥ 0,

0, if x < 0,
and χ(x) :=

f(R+ µ− |x|)
f(R+ µ− |x|) + f(|x| −R)

.

Since
f(|x| −R) + f(R+ µ− |x|) ≥ f(

µ

2
) = 2e

− 2
µ , (A.2)
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the denominator of χ is always positive, and thus χ is well de�ned. Moreover, χ ∈ C∞(R), since
f is smooth. Finally, for |x| ≤ R, we have f(|x| − R) = 0, which implies that χ(x) = 1. For
|x| ≥ R+ µ, we have f(R+ µ− |x|) = 0, so that χ(x) = 0.

It remains to prove the bound in (A.1). Using that

χ′(x) =
f ′(R+ µ− |x|)f(|x| −R) + f ′(|x| −R)f(R+ µ− |x|)

(f(|x| −R) + f(R+ µ− |x|))2
,

and that |f ′(x)| ≤ exp(−1/x)
x2

≤ 4e−2, we get

|χ′(x)| ≤ 8e−2

f(|x| −R) + f(R+ µ− |x|) .

Combining with (A.2), we conclude that |χ′(x)| ≤ 4e−2e
2
µ .
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