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Abstract
We consider the one-dimensional Landau–Lifshitz–Gilbert (LLG) equation, a
model describing the dynamics for the spin in ferromagnetic materials. Our
main aim is the analytical study of the bi-parametric family of self-similar
solutions of this model. In the presence of damping, our construction provides
a family of global solutions of the LLG equation which are associated with
discontinuous initial data of infinite (total) energy, and which are smooth and
have finite energy for all positive times. Special emphasis will be given to
the behaviour of this family of solutions with respect to the Gilbert damping
parameter.

We would like to emphasize that our analysis also includes the study of
self-similar solutions of the Schrödinger map and the heat flow for harmonic
maps into the 2-sphere as special cases. In particular, the results presented
here recover some of the previously known results in the setting of the 1D-
Schrödinger map equation.
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1. Introduction and statement of results

In this work we consider the one-dimensional Landau–Lifshitz–Gilbert (LLG) equation

�mt = β �m × �mss − α �m × ( �m × �mss), s ∈ R, t > 0, (LLG)

where �m = (m1, m2, m3) : R × (0, ∞) −→ S
2 is the spin vector, β � 0, α � 0, × denotes

the usual cross-product in R
3, and S

2 is the unit sphere in R
3.

Here we have not included the effects of anisotropy or an external magnetic field. The
first term on the right in (LLG) represents the exchange interaction, while the second one
corresponds to the Gilbert damping term and may be considered as a dissipative term in the
equation of motion. The parameters β � 0 and α � 0 are the so-called exchange constant and
Gilbert damping coefficient, and take into account the exchange of energy in the system and
the effect of damping on the spin chain respectively. Note that, by considering the time-scaling
�m(s, t) → �m(s, (α2 + β2)1/2t), in what follows we will assume w.l.o.g. that

α, β ∈ [0, 1] and α2 + β2 = 1. (1.1)

The LLG equation was first derived on phenomenological grounds by Landau and Lifshitz to
describe the dynamics for the magnetization or spin �m(s, t) in ferromagnetic materials [16,30].
The nonlinear evolution equation (LLG) is related to several physical and mathematical
problems and it has been seen to be a physically relevant model for several magnetic materials
[24, 26]. In the setting of the LLG equation, of particular importance is to consider the effect
of dissipation on the spin [11, 12, 34].

The Landau–Lifshitz family of equations includes as special cases the well-known heat-
flow for harmonic maps and the Schrödinger map equation onto the 2-sphere. Precisely, when
β = 0 (and therefore α = 1) the LLG equation reduces to the one-dimensional heat-flow
equation for harmonic maps

�mt = − �m × ( �m × �mss) = �mss + | �ms |2 �m (HFHM)

(notice that | �m|2 = 1, and in particular �m · �mss = −| �ms |2). The opposite limiting case of the
LLG equation (that is α = 0, i.e. no dissipation/damping and therefore β = 1) corresponds to
the Schrödinger map equation onto the sphere

�mt = �m × �mss . (SM)

Both special cases have been objects of intense research and we refer the interested reader
to [18, 19, 27, 31] for surveys.

Of special relevance is the connection of the LLG equation with certain nonlinear
Schrödinger equations. This connection is established as follows: let us suppose that �m is
the tangent vector of a curve in R

3, that is �m = �Xs , for some curve �X(s, t) ∈ R
3 parametrized

by the arc-length. It can be shown [12] that if �m evolves under (LLG) and we define the
so-called filament function u associated with �X(s, t) by

u(s, t) = c(s, t)ei
∫ s

0 τ(σ,t) dσ , (1.2)

in terms of the curvature c and torsion τ associated with the curve, then u solves the following
non-local non linear Schrödinger equation with damping

iut + (β − iα)uss +
u

2

(
β|u|2 + 2α

∫ s

0
Im(ūus) − A(t)

)
= 0, (1.3)

where A(t) ∈ R is a time-dependent function defined in terms of the curvature and torsion
and their derivatives at the point s = 0. The transformation (1.2) was first considered in the
undamped case by Hasimoto in [23]. Notice that if α = 0, equation (1.3) is the well-known
completely integrable cubic Schrödinger equation.
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The main purpose of this paper is the analytical study of self-similar solutions of the LLG
equation of the form

�m(s, t) = �m
(

s√
t

)
, (1.4)

for some profile �m : R → S
2, with emphasis on the behaviour of these solutions with respect

to the Gilbert damping parameter α ∈ [0, 1].
For α = 0, self-similar solutions have generated considerable interest [9, 14, 20, 27, 28].

We are not aware of any other study of such solutions for α > 0 in the one-dimensional case.
Self-similar solutions for the harmonic map flow in higher dimensions have been investigated
by Germain and Rupflin [15] (equivariant self-similar solutions of expander type, i.e. t > 0), by
Biernat and Bizoń [6] (expanders and shrinkers) and Bizoń and Wasserman [7] (non-existence
of shrinkers for high dimensions). Lipniacki [32] and Van Gorder [36] have studied self-
similar solutions for a related model with non-constant arc-length introduced in [33]. On the
other hand, little is known analytically about the effect of damping on the evolution of a one-
dimensional spin chain. In particular, Lakshmanan and Daniel obtained an explicit solitary
wave solution in [11, 12] and demonstrated the damping of the solution in the presence of
dissipation in the system. In this setting, we would like to understand how the dynamics of
self-similar solutions to this model is affected by the introduction of damping in the equations
governing the motion of these curves.

As will be shown in section 2 self-similar solutions of (LLG) of the type (1.4) constitute
a bi-parametric family of solutions { �mc0,α}c0,α given by

�mc0,α(s, t) = �mc0,α

(
s√
t

)
, c0 > 0, α ∈ [0, 1], (1.5)

where �mc0,α is the solution of the Serret–Frenet equations


�m′ = c�n,

�n′ = −c �m + τ �b,

�b′ = −τ �n,

(1.6)

with curvature and torsion given respectively by

cc0,α(s) = c0e− αs2

4 , τc0,α(s) = βs

2
, (1.7)

and initial conditions

�mc0,α(0) = (1, 0, 0), �nc0,α(0) = (0, 1, 0), �bc0,α(0) = (0, 0, 1). (1.8)

The first result of this paper is the following:

Theorem 1.1. Let α ∈ [0, 1], c0 > 03 and �mc0,α be the solution of the Serret–Frenet system
(1.6) with curvature and torsion given by (1.7) and initial conditions (1.8). Define �mc0,α(s, t) by

�mc0,α(s, t) = �mc0,α

(
s√
t

)
, t > 0.

Then,

(i) The function �mc0,α is a C∞(R; S
2)-solution of (LLG) on R × R

∗
+.

3 The case c0 = 0 corresponds to the constant solution for (LLG), that is

�mc0,α(s, t) = �m
(

s√
t

)
= (1, 0, 0), ∀α ∈ [0, 1].
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(a) (b) (c)

Figure 1. The profile �mc0,α for c0 = 0.8 and different values of α.

(ii) There exist unitary vectors �A±
c0,α

= (A±
j,c0,α

)3
j=1 ∈ S

2 such that the following pointwise
convergence holds when t goes to zero:

lim
t→0+

�mc0,α(s, t) =
{ �A+

c0,α
, if s > 0,

�A−
c0,α

, if s < 0,
(1.9)

where �A−
c0,α

= (A+
1,c0,α

, −A+
2,c0,α

, −A+
3,c0,α

).
(iii) Moreover, there exists a constant C(c0, α, p) such that for all t > 0

‖ �mc0,α(·, t) − �A+
c0,α

χ(0,∞)(·) − �A−
c0,α

χ(−∞,0)(·)‖Lp(R) � C(c0, α, p)t
1

2p , (1.10)

for all p ∈ (1, ∞). In addition, if α > 0, (1.10) also holds for p = 1. Here, χE denotes
the characteristic function of a set E.

The graphics in figure 1 depict the profile �mc0,α(s) for fixed c0 = 0.8 and the values of
α = 0.01, α = 0.2 and α = 0.4. In particular it can be observed how the convergence of �mc0,α

to �A±
c0,α

is accelerated by the diffusion α.
Notice that the initial condition

�mc0,α(s, 0) = �A+
c0,α

χ(0,∞)(s) + �A−
c0,α

χ(−∞,0)(s), (1.11)

has a jump singularity at the point s = 0 whenever the vectors �A+
c0,α

and �A−
c0,α

satisfy

�A+
c0,α


= �A−
c0,α

.

In this situation (and we will be able to prove analytically this is the case at least for certain
ranges of the parameters α and c0, see proposition 1.5 below), theorem 1.1 provides a bi-
parametric family of global smooth solutions of (LLG) associated with discontinuous singular
initial data (jump-singularity).

As has been already mentioned, in the absence of damping (α = 0), singular self-similar
solutions of the Schrödinger map equation were previously obtained in [20, 28] and [9]. In
this framework, theorem 1.1 establishes the persistence of a jump singularity for self-similar
solutions in the presence of dissipation.

When α = 0, the stability of the self-similar solutions was considered in a series of papers
by Banica and Vega [3–5]. The stability in the case α > 0 is a natural question that will be
discussed elsewhere.

Some further remarks on the results stated in theorem 1.1 are in order. Firstly, from the
self-similar nature of the solutions �mc0,α(s, t) and the Serret–Frenet equations (1.6), it follows
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that the curvature and torsion associated with these solutions are of the self-similar form and
given by

cc0,α(s, t) = c0√
t
e− αs2

4t and τc0,α(s, t) = βs

2
√

t
. (1.12)

As a consequence, the total energy E(t) of the spin �mc0,α(s, t) found in theorem 1.1 is
expressed as

E(t) = 1

2

∫ ∞

−∞
| �ms(s, t)|2 ds = 1

2

∫ ∞

−∞
c2
c0,α

(s, t) ds

= 1

2

∫ ∞

−∞

(
c0√
t
e− αs2

4t

)2

ds = c2
0

√
π

αt
, α > 0, t > 0. (1.13)

It is evident from (1.13) that the total energy of the spin chain at the initial time t = 0 is infinite,
while the total energy of the spin becomes finite for all positive times, showing the dissipation
of energy in the system in the presence of damping.

Secondly, it is also important to remark that in the setting of Schrödinger equations, for
fixed α ∈ [0, 1] and c0 > 0, the solution �mc0,α(s, t) of (LLG) established in theorem 1.1 is
associated through the Hasimoto transformation (1.2) to the filament function

uc0,α(s, t) = c0√
t
e(−α+iβ) s2

4t , (1.14)

which solves

iut + (β − iα)uss +
u

2

(
β|u|2 + 2α

∫ s

0
Im(ūus) − A(t)

)
= 0, with A(t) = βc2

0

t

(1.15)

and is such that at initial time t = 0

uc0,α(s, 0) = 2c0

√
π(α + iβ)δ0.

Here δ0 denotes the delta distribution at the point s = 0 and
√

z denotes the square root of a
complex number z such that Im(

√
z) > 0.

Notice that the solution uc0,α(s, t) is very rough at initial time, and in particular uc0,α(s, 0)

does not belong to the Sobolev class Hs for any s � 0. Therefore, the standard arguments
(that is a Picard iteration scheme based on Strichartz estimates and Sobolev–Bourgain spaces)
cannot be applied at least not in a straightforward way to study the local well-posedness of
the initial value problem for the Schrödinger equations (1.15). In the case α = 0, A(t) = 0
and when the initial condition is proportional to the Dirac delta, Kenig, Ponce and Vega [25]
proved that the Cauchy problem for (1.15) is ill-posed due to some oscillations. Moreover,
even after removing these oscillations by introducing an appropriate non-trivial A(t), Banica
and Vega [3] showed that the associated equation (1.15) (with α = 0 and A(t) = c2

0/t) is still
ill-posed. The existence of solutions of the Scrödinger equations (1.15) associated with initial
data proportional to a Dirac delta opens the question of developing a well-posedness theory
for Schrödinger equations of the type considered here to include initial data of infinite energy.
This question was also addressed by Vargas and Vega in [37] and Grünrock in [17] for other
types of initial data of infinite energy (see also [2] for a related problem), but we are not aware
of any results in this setting when α > 0 (see [19] for related well-posedness results in the
case α > 0 for initial data in Sobolev spaces of positive index). Notice that when α > 0, the
solution (1.14) has infinite energy at the initial time; however, the energy becomes finite for
any t > 0. Moreover, as a consequence of the exponential decay in the space variable when
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α > 0, uc0,α(t) ∈ Hm(R), for all t > 0 and m ∈ N. Hence these solutions do not fit into the
usual functional framework for solutions of the Schrödinger equations (1.15).

As already mentioned, one of the main goals of this paper is to study both the qualitative
and quantitative effect of the damping parameter α and the parameter c0 on the dynamical
behaviour of the family { �mc0,α}c0,α of self-similar solutions of (LLG) found in theorem 1.1.
Precisely, in an attempt to fully understand the regularization of the solution at positive times
close to the initial time t = 0, and to understand how the presence of damping affects the
dynamical behaviour of these self-similar solutions, we aim to give answers to the following
questions:

Q1: Can we obtain a more precise behaviour of the solutions �mc0,α(s, t) at positive times t

close to zero?
Q2: Can we understand the limiting vectors �A±

c0,α
in terms of the parameters c0 and α?

In order to address our first question, we observe that, due to the self-similar nature of these
solutions (see (1.5)), the behaviour of the family of solutions �mc0,α(s, t) at positive times close
to the initial time t = 0 is directly related to the study of the asymptotics of the associated
profile �mc0,α(s) for large values of s. In addition, the symmetries of �mc0,α(s) (see theorem 1.2
below) allow to reduce ourselves to obtain the behaviour of the profile �mc0,α(s) for large positive
values of the space variable. The precise asymptotics of the profile is given in the following
theorem.

Theorem 1.2 (Asymptotics). Let α ∈ [0, 1], c0 > 0 and { �mc0,α, �nc0,α, �bc0,α} be the solution of
the Serret–Frenet system (1.6) with curvature and torsion given by (1.7) and initial conditions
(1.8). Then,

(i) (Symmetries). The components of �mc0,α(s), �nc0,α(s) and �bc0,α(s) satisfy respectively that

• m1,c0,α(s) is an even function, and mj,c0,α(s) is an odd function for j ∈ {2, 3}.
• n1,c0,α(s) and b1,c0,α(s) are odd functions, while nj,c0,α(s) and bj,c0,α(s) are even

functions for j ∈ {2, 3}.
(ii) (Asymptotics). There exist a unit vector �A+

c0,α
∈ S

2 and �B+
c0,α

∈ R
3 such that the following

asymptotics hold for all s � s0 = 4
√

8 + c2
0:

�mc0,α(s) = �A+
c0,α

− 2c0

s
�B+
c0,α

e−αs2/4(α sin( �φ(s)) + β cos( �φ(s)))

−2c2
0

s2
�A+

c0,α
e−αs2/2 + O

(
e−αs2/4

s3

)
, (1.16)

�nc0,α(s) = �B+
c0,α

sin( �φ(s)) +
2c0

s
�A+

c0,α
αe−αs2/4 + O

(
e−αs2/4

s2

)
, (1.17)

�bc0,α(s) = �B+
c0,α

cos( �φ(s)) +
2c0

s
�A+

c0,α
βe−αs2/4 + O

(
e−αs2/4

s2

)
. (1.18)

Here, sin( �φ) and cos( �φ) are understood acting on each of the components of �φ =
(φ1, φ2, φ3), with

φj (s) = aj + β

∫ s2/4

s2
0 /4

√
1 + c2

0

e−2ασ

σ
dσ, j ∈ {1, 2, 3}, (1.19)
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for some constants a1, a2, a3 ∈ [0, 2π), and the vector �B+
c0,α

is given in terms of
�A+

c0,α
= (A+

j,c0,α
)3
j=1 by

�B+
c0,α

= ((1 − (A+
1,c0,α

)2)1/2, (1 − (A+
2,c0,α

)2)1/2, (1 − (A+
3,c0,α

)2)1/2).

As we will see in section 2, the convergence and rate of convergence of the solutions
�mc0,α(s, t) of the LLG equation established in parts (ii) and (iii) of theorem 1.1 will be obtained
as a consequence of the more refined asymptotic analysis of the associated profile given in
theorem 1.2.

With regard to the asymptotics of the profile established in part (ii) of theorem 1.2, it is
important to mention the following:

(a) The errors in the asymptotics in theorem 1.2-(ii) depend only on c0. In other words, the
bounds for the errors terms are independent of α ∈ [0, 1]. More precisely, we use the
notation O(f (s)) to denote a function for which exists a constant C(c0) > 0 depending
on c0, but independent on α, such that

|O (f (s))| � C(c0)|f (s)|, for all s � s0. (1.20)

(b) The terms �A+
c0,α

, �B+
c0,α

= (B+
j )3

j=1, B+
j sin(aj ) and B+

j cos(aj ), j ∈ {1, 2, 3}, and the
error terms in theorem 1.2-(ii) depend continuously on α ∈ [0, 1] (see section 3.3 and
corollary 3.14). Therefore, the asymptotics (1.16)–(1.18) show how the profile �mc0,α

converges to �mc0,0 as α → 0+ and to �mc0,1 as α → 1−. In particular, we recover the
asymptotics for �mc0,0 given in [20].

(c) We also remark that using the Serret–Frenet formulae and the asymptotics in theorem 1.2-
(ii), it is straightforward to obtain the asymptotics for the derivatives of �mc0,α(s, t).

(d) When α = 0 and for fixed j ∈ {1, 2, 3}, we can write φj in (1.19) as

φj (s) = aj +
s2

4
+ c2

0 ln(s) + C(c0) + O

(
1

s2

)
,

and we recover the logarithmic contribution in the oscillation previously found in [20].
Moreover, in this case the asymptotics in part (ii) represents an improvement of the one
established in theorem 1 in [20], in terms of the order of the polynomial asymptotics.
When α > 0, φj behaves like

φj (s) = aj +
βs2

4
+ C(α, c0) + O

(
e−αs2/2

αs2

)
, (1.21)

and there is no logarithmic correction in the oscillations in the presence of damping.
Consequently, the phase function �φ defined in (1.19) captures the different nature of the
oscillatory character of the solutions in both the absence and the presence of damping in
the system of equations.

(e) When α = 1, there exists an explicit formula for �mc0,1, �nc0,1 and �bc0,1, and in particular
we have explicit expressions for the vectors �A±

c0,1
in terms of the parameter c0 > 0 in the

asymptotics given in part (ii). See appendix.
(f) At first glance, one might think that the term −2c2

0
�A+

c0,α
e−αs2/2/s2 in (1.16) could be

included in the error term O(e−αs2/4/s3). However, we cannot do this because

e−αs2/2

s2
>

e−αs2/4

s3
, for all 2 � s �

(
2

3α

)1/2

, α ∈ (0, 1/8], (1.22)

and in our notation the big-O must be independent of α. (The exact interval where the
inequality in (1.22) holds can be determined using the so-called Lambert W function.)
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(g) Let �B+
c0,α,sin = (Bj sin(aj ))

3
j=1, �B+

c0,α,cos = (Bj cos(aj ))
3
j=1. Then the orthogonality of

�mc0,α , �nc0,α and �bc0,α together with the asymptotics (1.16)–(1.18) yield

�A+
c0,α

· �B+
c0,α,sin = �A+

c0,α
· �B+

c0,α,cos = �B+
c0,α,sin · �B+

c0,α,cos = 0,

which gives relations between the phases.
(h) Finally, the amplitude of the leading order term controlling the wave-like behaviour of the

solution �mc0,α(s) around �A±
c0,α

for values of s sufficiently large is of the order c0 e−αs2/4/s,

from which one observes how the convergence of the solution to its limiting values �A±
c0,α

is accelerated in the presence of damping in the system. See figure 1.

We conclude the introduction by stating the results answering the second of our questions Q2.
Precisely, theorems 1.3 and 1.4 below establish the dependence of the vectors �A±

c0,α
in

theorem 1.1 with respect to the parameters α and c0. Theorem 1.3 provides the behaviour
of the limiting vector �A+

c0,α
for a fixed value of α ∈ (0, 1] and ‘small’ values of c0 > 0, while

theorem 1.4 states the behaviour of �A+
c0,α

for fixed c0 > 0 and α close to the limiting values

α = 0 and α = 1. Recall that �A−
c0,α

is expressed in terms of the coordinates of �A+
c0,α

as

�A−
c0,α

= (A+
1,c0,α

, −A+
2,c0,α

, −A+
3,c0,α

) (1.23)

(see part (ii) of theorem 1.1).

Theorem 1.3. Let α ∈ [0, 1], c0 > 0, and �A+
c0,α

= (A+
j,c0,α

)3
j=1 be the unit vector given in

theorem 1.2. Then �A+
c0,α

is a continuous function of c0 > 0. Moreover, if α ∈ (0, 1] the
following inequalities hold true:

|A+
1,c0,α

− 1| � c2
0π

α

(
1 +

c2
0π

8α

)
, (1.24)

∣∣∣∣A+
2,c0,α

− c0

√
π(1 + α)√

2

∣∣∣∣ � c2
0π

4
+

c2
0π

α
√

2

(
1 +

c2
0π

8
+ c0

√
π(1 + α)

2
√

2

)
+

(
c2

0π

2
√

2α

)2

,

(1.25)∣∣∣∣A+
3,c0,α

− c0

√
π(1 − α)√

2

∣∣∣∣ � c2
0π

4
+

c2
0π

α
√

2

(
1 +

c2
0π

8
+ c0

√
π(1 − α)

2
√

2

)
+

(
c2

0π

2
√

2α

)2

.

(1.26)

When α = 0 or α = 1, the vector �A+
c0,α

= (A+
j,c0,α

)3
j=1 is determined explicitly in terms

of the parameter c0 (see [20] for the case α = 0 and appendix for the case α = 1). Precisely,
denoting by 	 the Euler Gamma function, we have

A+
1,c0,0 = e− πc2

0
2 , (1.27)

A+
2,c0,0 = 1 − e− πc2

0
4

8π
sinh(πc2

0/2)|c0	(ic2
0/4) + 2eiπ/4	(1/2 + ic2

0/4)|2, (1.28)

A+
3,c0,0 = 1 − e− πc2

0
4

8π
sinh(πc2

0/2)|c0	(ic2
0/4) − 2e−iπ/4	(1/2 + ic2

0/4)|2 (1.29)

and

�A+
c0,1 = (cos(c0

√
π), sin(c0

√
π), 0). (1.30)

The following result provides an approximation of the behaviour of �A+
c0,α

for fixed c0 > 0
and values of the Gilbert parameter close to 0 and 1.
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Theorem 1.4. Let c0 > 0, α ∈ [0, 1] and �A+
c0,α

be the unit vector given in theorem 1.2. Then
�A+

c0,α
is a continuous function of α in [0, 1], and the following inequalities hold true:

| �A+
c0,α

− �A+
c0,0| � C(c0)

√
α| ln(α)|, for all α ∈ (0, 1/2], (1.31)

| �A+
c0,α

− �A+
c0,1| � C(c0)

√
1 − α, for all α ∈ [1/2, 1]. (1.32)

Here, C(c0) is a positive constant depending on c0 but otherwise independent of α.

As a by-product of theorems 1.3 and 1.4, we obtain the following proposition which asserts
that the solutions �mc0,α(s, t) of the LLG equation found in theorem 1.1 are indeed associated
with discontinuous initial data at least for certain ranges of α and c0.

Proposition 1.5. With the same notation as in theorems 1.1 and 1.2, the following statements
hold:

(i) For fixed α ∈ (0, 1] there exists c∗
0 > 0 depending on α such that

�A+
c0,α


= �A−
c0,α

for all c0 ∈ (0, c∗
0).

(ii) For fixed c0 > 0, there exists α∗
0 > 0 small enough such that

�A+
c0,α


= �A−
c0,α

for all α ∈ (0, α∗
0).

(iii) For fixed 0 < c0 
= k
√

π with k ∈ N, there exists α∗
1 > 0 with 1 − α∗

1 > 0 small enough
such that

�A+
c0,α


= �A−
c0,α

for all α ∈ (α∗
1 , 1).

Remark 1.6. From (1.27)–(1.29) we get �A+
c0,0


= �A−
c0,0

for all c0 > 0. Based on the numerical

results in section 5, we conjecture that �A+
c0,α


= �A−
c0,α

for all α ∈ (0, 1) and c0 > 0.

We would like to point out that some of our results and their proofs combine and extend
several ideas previously introduced in [20] and [21]. The approach we use in the proof of the
main results in this paper is based on the integration of the Serret–Frenet system of equations
via a Riccati equation, which in turn can be reduced to the study of a second-order ordinary
differential equation given by

f ′′(s) +
s

2
(α + iβ)f ′(s) +

c2
0

4
e− αs2

2 f (s) = 0 (1.33)

when the curvature and torsion are given by (1.7).
Unlike in the undamped case, in the presence of damping no explicit solutions are known

for equation (1.33) and the term containing the exponential in the equation (1.33) makes it
difficult to use Fourier analysis methods to study analytically the behaviour of the solutions to
this equation. The fundamental step in the analysis of the behaviour of the solutions of (1.33)
consists in introducing new auxiliary variables z, h and y defined by

z = |f |2, y = Re(f̄ f ′) and h = Im(f̄ f ′)

in terms of solutions f of (1.33), and studying the system of equations satisfied by these key
quantities. As we will see later on, these variables are the ‘natural’ ones in our problem, in
the sense that the components of the tangent, normal and binormal vectors can be written in
terms of these quantities. It is important to emphasize that, in order to obtain error bounds
in the asymptotic analysis independent of the damping parameter α (and hence recover the
asymptotics when α = 0 and α = 1 as particular cases), it will be fundamental to exploit the
cancellations due to the oscillatory character of z, y and h.
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The outline of this paper is the following. Section 2 is devoted to the construction of the
family of self-similar solutions { �mc0,α}c0,α of the LLG equation. In section 3 we reduce the
study of the properties of this family of self-similar solutions to that of the properties of the
solutions of the complex second-order complex ODE (1.33). This analysis is of independent
interest. Section 4 contains the proofs of the main results of this paper as a consequence of
those established in section 3. In section 5 we provide some numerical results for �A+

c0,α
, as a

function of α ∈ [0, 1] and c0 > 0, which give some insight into the scattering problem and
justify remark 1.6. Finally, we have included the study of the self-similar solutions of the LLG
equation in the case α = 1 in appendix.

2. Self-similar solutions of the LLG equation

First we derive what we will refer to as the geometric representation of the LLG equation. To
this end, let us assume that �m(s, t) = �Xs(s, t) for some curve �X(s, t) in R

3 parametrized with
respect to the arc-length with curvature c(s, t) and torsion τ(s, t). Then, using the Serret–Frenet
system of equations (1.6), we have

�mss = cs�n + c(−c �m + τ�b),

and thus we can rewrite (LLG) as

∂t �m = β(cs
�b − cτ�n) + α(cτ�b + cs�n), (2.1)

in terms of intrinsic quantities c, τ and the Serret–Frenet trihedron { �m, �n, �b}.
We are interested in self-similar solutions of (LLG) of the form

�m(s, t) = �m
(

s√
t

)
(2.2)

for some profile �m : R −→ S
2. First, notice that due to the self-similar nature of �m(s, t) in

(2.2), from the Serret–Frenet equations (1.6) it follows that the unitary normal and binormal
vectors and the associated curvature and torsion are self-similar and given by

�n(s, t) = �n
(

s√
t

)
, �b(s, t) = �b

(
s√
t

)
, (2.3)

c(s, t) = 1√
t
c

(
s√
t

)
and τ(s, t) = 1√

t
τ

(
s√
t

)
. (2.4)

Assume that �m(s, t) is a solution of the LLG equation, or equivalently of its geometric version
(2.1). Then, from (2.2)–(2.4) it follows that the Serret–Frenet trihedron { �m(·), �n(·), �b(·)} solves

− s

2
c�n = β(c′ �b − cτ �n) + α(cτ �b + c′ �n). (2.5)

As a consequence,

− s

2
c = αc′ − βcτ and βc′ + αcτ = 0.

Thus, we obtain

c(s) = c0 e− αs2

4 and τ(s) = βs

2
, (2.6)

for some positive constant c0 (recall that we are assuming w.l.o.g. that α2 +β2 = 1). Therefore,
in view of (2.4), the curvature and torsion associated with a self-similar solution of (LLG) of
the form (2.2) are given respectively by

c(s, t) = c0√
t
e− αs2

4t and τ(s, t) = βs

2t
, c0 > 0. (2.7)
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Notice that given (c, τ) as above, for fixed time t > 0 one can solve the Serret–Frenet system
of equations to obtain the solution up to a rigid motion in the space which in general may
depend on t . As a consequence, and in order to determine the dynamics of the spin chain, we
need to find the time evolution of the trihedron { �m(s, t), �n(s, t), �b(s, t)} at some fixed point
s∗ ∈ R. To this end, from the above expressions of the curvature and torsion associated with
�m(s, t) and evaluating the equation (2.1) at the point s∗ = 0, we obtain that �mt (0, t) = �0. On
the other hand, differentiating the geometric equation (2.1) with respect to s, and using the
Serret–Frenet equations (1.6), the fact that �nt · �n = 0, together with the compatibility condition
�mst = �mts , we get the following relation for the time evolution of the normal vector

c�nt = β(css
�b + c2τ �m − cτ2�b) + α((cτ)s�b − ccs �m + csτ�b).

The evaluation of the above identity at s∗ = 0 together with the expressions for the curvature
and torsion in (2.7) yield �nt (0, t) = �0. The above argument shows that

�mt (0, t) = �0, �nt (0, t) = �0 and �bt (0, t) = ( �m × �n)t (0, t) = �0.

Therefore we can assume w.l.o.g. that

�m(0, t) = (1, 0, 0), �n(0, t) = (0, 1, 0) and �b(0, t) = (0, 0, 1),

and in particular

�m(0) = �m(0, 1) = (1, 0, 0), �n(0) = �n(0, 1) = (0, 1, 0), and �b(0) = �b(0, 1) = (0, 0, 1).

(2.8)

Given α ∈ [0, 1] and c0 > 0, from the theory of ODEs, it follows that there exists a unique
{ �mc0,α(·), �nc0,α(·), �bc0,α(·)} ∈ (

C∞(R; S
2)

)3
solution of the Serret–Frenet equations (1.6) with

curvature and torsion (2.6) and initial conditions (2.8) such that

�mc0,α ⊥ �nc0,α, �mc0,α ⊥ �bc0,α, �nc0,α ⊥ �bc0,α

and

| �mc0,α|2 = |�nc0,α|2 = |�bc0,α|2 = 1.

Define �mc0,α(s, t) as

�mc0,α(s, t) = �mc0,α

(
s√
t

)
. (2.9)

Then, �mc0,α(·, t) ∈ C∞ (
R; S

2
)

for all t > 0, and bearing in mind both the relations in
(2.3)–(2.4) and the fact that the vectors { �mc0,α(·), �nc0,α(·), �bc0,α(·)} satisfy the identity (2.5),
a straightforward calculation shows that �mc0,α is a C∞(R; S

2)-solution of the LLG equation
on R × R

∗
+. Notice that the case c0 = 0 yields the constant solution �m0,α(s, t) = (1, 0, 0).

Therefore in what follows we will assume that c0 > 0.
The rest of the paper is devoted to establish analytical properties of the solutions

{ �mc0,α(s, t)}c0,α defined by (2.9) for fixed α ∈ [0, 1] and c0 > 0. As already mentioned, due
to the self-similar nature of these solutions, it suffices to study the properties of the associated
profile �mc0,α(·) or, equivalently, of the solution { �mc0,α, �nc0,α, �bc0,α} of the Serret–Frenet system
(1.6) with curvature and torsion given by (2.6) and initial conditions (2.8). As we will continue
to see, the analysis of the profile solution { �mc0,α, �nc0,α, �bc0,α} can be reduced to the study of
the properties of the solutions of a certain second-order complex differential equation.
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3. Integration of the Serret–Frenet system

3.1. Reduction to the study of a second-order ODE

Classical changes of variables from the differential geometry of curves allow us to reduce the
nine equations in the Serret–Frenet system into three complex-valued second-order equations
(see [13, 29, 35]). These changes of variables are related to stereographic projection and this
approach was also used in [20]. However, their choice of stereographic projection has a
singularity at the origin, which leads to an indetermination of the initial conditions of some
of the new variables. For this reason, we consider in the following lemma a stereographic
projection that is compatible with the initial conditions (2.8). Although the proof of the lemma
below is a slight modification of that in subsections 2.12 and 7.3 [29], we have included its
proof here both for the sake of completeness and to clarify to the unfamiliar reader how the
integration of the Frenet equations can be reduced to the study of a second-order differential
equation.

Lemma 3.1. Let �m = (mj (s))
3
j=1, �n = (nj (s))

3
j=1 and �b = (bj (s))

3
j=1 be a solution of

the Serret–Frenet equations (1.6) with positive curvature c and torsion τ . Then, for each
j ∈ {1, 2, 3} the function

fj (s) = e
1
2

∫ s

0 c(σ )ηj (σ ) dσ , with ηj (s) = (nj (s) + ibj (s))

1 + mj(s)
,

solves the equation

f ′′
j (s) +

(
iτ (s) − c′(s)

c(s)

)
f ′

j (s) +
c2(s)

4
fj (s) = 0, (3.1)

with initial conditions

fj (0) = 1, f ′
j (0) = c(0)(nj (0) + ibj (0))

2(1 + mj(0))
.

Moreover, the coordinates of �m, �n and �b are given in terms of fj and f ′
j by

mj(s)=2

(
1+

4

c(s)2

∣∣∣∣f
′
j (s)

fj (s)

∣∣∣∣
2
)−1

−1, nj (s) + ibj (s)=
4f ′

j (s)

c(s)fj (s)

(
1+

4

c(s)2

∣∣∣∣f
′
j (s)

fj (s)

∣∣∣∣
2
)−1

.

(3.2)

The above relations are valid at least as long as mj > −1 and |fj | > 0.

Proof. For simplicity, we omit the index j , setting m = mj , n = nj and b = bj . The proof
relies on several transformations that are rather standard in the study of curves. First we define
the complex function

N = (n + ib)ei
∫ s

0 τ(σ ) dσ . (3.3)

Then N ′ = iτN + (n′ + ib′)ei
∫ s

0 τ(σ ) dσ . On the other hand, the Serret–Frenet equations imply
that

n′ + ib′ = −cm − iτNe−i
∫ s

0 τ(σ ) dσ .

Therefore, setting

ψ = cei
∫ s

0 τ(σ ) dσ ,

we get

N ′ = −ψm. (3.4)
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Using again the Serret–Frenet equations, we also obtain

m′ = 1

2
(ψN + ψN). (3.5)

Let us consider now the auxiliary function

ϕ = N

1 + m
. (3.6)

Differentiating and using (3.4), (3.5) and (3.6)

ϕ′ = N ′

1 + m
− Nm′

(1 + m)2

= N ′

1 + m
− ϕm′

1 + m

= −ϕ2ψ

2
− ψ

2(1 + m)
(2m + ϕN).

Noticing that we can recast the relation m2 + n2 + b2 = 1 as NN = (1 − m)(1 + m) and
recalling the definition of ϕ in (3.6), we have ϕN = 1 − m, so that

ϕ′ +
ϕ2ψ

2
+

ψ

2
= 0. (3.7)

Finally, consider the stereographic projection of (n, b, m) from the south pole

η = n + ib

1 + m
. (3.8)

Observe that from the definitions of N and ϕ, respectively in (3.3) and (3.6), we can rewrite
η as

η = ϕe−i
∫ s

0 τ(σ ) dσ ,

and from (3.7) it follows that η solves the Riccati equation

η′ + iτη +
c

2
(η2 + 1) = 0, (3.9)

(recall that ψ = cei
∫ s

0 τ(σ ) dσ ). Finally, setting

f (s) = e
1
2

∫ s

0 c(σ )η(σ ) dσ , (3.10)

we get

η = 2f ′

cf
(3.11)

and equation (3.1) follows from (3.9). The initial conditions are an immediate consequence
of the definition of η and f in (3.8) and (3.10).

A straightforward calculation shows that the inverse transformation of the stereographic
projection is

m = 1 − |η|2
1 + |η|2 , n = 2 Re η

1 + |η|2 , b = 2 Im η

1 + |η|2 ,

so that we obtain (3.2) using (3.11) and the above identities. �
Going back to our problem, lemma 3.1 reduces the analysis of the solution { �m, �n, �b} of

the Serret–Frenet system (1.6) with curvature and torsion given by (2.6) and initial conditions
(2.8) to the study of the second-order differential equation

f ′′(s) +
s

2
(α + iβ)f ′(s) +

c2
0

4
e−αs2/2f (s) = 0, (3.12)
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with three initial conditions: for (m1, n1, b1) = (1, 0, 0) the associated initial condition for
f1 is

f1(0) = 1, f ′
1(0) = 0, (3.13)

for (m2, n2, b2) = (0, 1, 0) is

f2(0) = 1, f ′
2(0) = c0

2
, (3.14)

and for (m3, n3, b3) = (0, 0, 1) is

f3(0) = 1, f ′
3(0) = ic0

2
. (3.15)

It is important to notice that, by multiplying (3.12) by e
αs2

2 f̄ ′ and taking the real part, it is easy
to see that

d

ds

[
1

2

(
e

αs2

2 |f ′|2 +
c2

0

4
|f |2

)]
= 0.

Thus,

E(s) : = 1

2

(
e

αs2

2 |f ′|2 +
c2

0

4
|f |2

)
= E0, ∀ s ∈ R, (3.16)

with E0 a constant defined by the value of E(s) at some point s0 ∈ R. The conservation of
the energy E(s) allows us to simplify the expressions of mj , nj and bj for j ∈ {1, 2, 3} in
the formulae (3.2) in terms of the solution fj to (3.12) associated with the initial conditions
(3.13)–(3.15).

Indeed, on the one hand notice that the energies associated with the initial conditions
(3.13)–(3.15) are respectively

E0,1 = c2
0

8
, E0,2 = c2

0

4
and E0,3 = c2

0

4
. (3.17)

On the other hand, from (3.16), it follows that(
1 +

4

c2
0e− αs2

2

|f ′
j |2(s)

|fj |2(s)

)−1

= c2
0

8E0,j

|fj |2(s), j ∈ {1, 2, 3}.

Therefore, from (3.17), the above identity and formulae (3.2) in lemma 3.1, we conclude that

m1(s) = 2|f1(s)|2 − 1, n1(s) + ib1(s) = 4

c0
eαs2/4f̄1(s)f

′
1(s), (3.18)

mj(s) = |fj (s)|2 − 1, nj (s) + ibj (s) = 2

c0
eαs2/4f̄j (s)f

′
j (s), j ∈ {2, 3}. (3.19)

The above identities give the expressions of the tangent, normal and binormal vectors in terms
of the solutions {fj }3

j=1 of the second-order differential equation (3.12) associated with the
initial conditions (3.13)–(3.15).

By lemma 3.1, the formulae (3.18) and (3.19) are valid as long as mj > −1, which is
equivalent to the condition |fj | 
= 0. As shown in appendix, for α = 1 there is s̃ > 0 such
that mj(s̃) = −1 and then (3.18) and (3.19) are (a priori) valid just in a bounded interval.
However, the trihedron { �m, �n, �b} is defined globally and fj can also be extended globally as
the solution of the linear equation (3.12). Then, it is simple to verify that the functions given
by the l.h.s. of formulae (3.18) and (3.19) satisfy the Serret–Frenet system and hence, by the
uniqueness of the solution, the formulae (3.18) and (3.19) are valid for all s ∈ R.
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3.2. The second-order equation: asymptotics

In this section we study the properties of the complex-valued equation

f ′′(s) +
s

2
(α + iβ)f ′(s) +

c2
0

4
f (s)e−αs2/2 = 0, (3.20)

for fixed c0 > 0, α ∈ [0, 1), β > 0 such that α2 + β2 = 1. We begin noticing that in the
case α = 0, the solution can be written explicitly in terms of parabolic cylinder functions
or confluent hypergeometric functions (see [1]). Another analytical approach using Fourier
analysis techniques has been taken in [20], leading to the asymptotics

f (s) = C1ei(c2
0/2) ln(s) + C2

e−is2/4

s
e−i(c2

0/2) ln(s) + O(1/s2), (3.21)

as s → ∞, where the constants C1, C2 and O(1/s2) depend on the initial conditions and c0.
For α = 1, equation (3.20) can be also solved explicitly and the solution is given by

f (s) = 2f ′(0)

c0
sin

(
c0

2

∫ s

0
e−σ 2/4 dσ

)
+ f (0) cos

(
c0

2

∫ s

0
e−σ 2/4 dσ

)
.

In the case α ∈ (0, 1), one cannot compute the solutions of (3.20) in terms of known functions
and we will follow a more analytical analysis. In contrast with the situation when α = 0, it is
far from evident to use Fourier analysis to study (3.20) when α > 0.

For the rest of this section we will assume that α ∈ [0, 1). In addition, we will also
assume that s > 0 and we will develop the asymptotic analysis necessary to establish part (ii)
of theorem 1.2.

At this point, it is important to recall the expressions given in (3.18)–(3.19) for the
coordinates of the tangent, normal and binormal vectors associated with our family of solutions
of the LLG equation in terms f . Bearing this in mind, we observe that the study of the
asymptotic behaviour of these vectors are dictated by the asymptotic behaviour of the variables

z = |f |2, y = Re(f̄ f ′), and h = Im(f̄ f ′) (3.22)

associated with the solution f of (3.20).
As explained in the remark (a) after theorem 1.2, we need to work with remainder terms

that are independent of α. To this aim, we proceed in two steps: first we found uniform
estimates for α ∈ [0, 1/2] in propositions 3.2 and 3.3, then we treat the case α ∈ [1/2, 1) in
lemma 3.6. In section 3.3 we provide some continuity results that allows us to take α → 1−

and give the full statement in corollary 3.14. Finally, notice that these asymptotics lead to the
asymptotics for the original equation (3.20) (see remark 3.9).

We begin our analysis by establishing the following:

Proposition 3.2. Let c0 > 0, α ∈ [0, 1), β > 0 such that α2 + β2 = 1, and f be a solution of
(3.20). Define z, y and h as z = |f |2 and y + ih = f̄ f ′. Then

(i) There exists E0 � 0 such that the identity

1

2

(
eα s2

2 |f ′|2 +
c2

0

4
|f |2

)
= E0

holds true for all s ∈ R. In particular, f , f ′, z, y and h are bounded functions. Moreover,
for all s ∈ R

|f (s)| �
√

8E0

c0
, |f ′(s)| �

√
2E0 e−αs2/4, (3.23)

|z(s)| � 8E0

c2
0

and |h(s)| + |y(s)| � 8E0

c0
e−αs2/4. (3.24)
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(ii) The limit

z∞ : = lim
s→∞ z(s)

exists.

(iii) Let γ := 2E0 − c2
0z∞/2 and s0 = 4

√
8 + c2

0. For all s � s0, we have

z(s) − z∞ = −4

s
(αy + βh) − 4γ

s2
e−αs2/2 + R0(s), (3.25)

where

|R0(s)| � C(E0, c0)
e−αs2/4

s3
. (3.26)

Proof. Part (i) is just the conservation of energy proved in (3.16). Next, using the conservation
law in part (i), we obtain that the variables {z, y, h} solve the first-order real system

z′ = 2y, (3.27)

y ′ = β
s

2
h − α

s

2
y + e−αs2/2

(
2E0 − c2

0

2
z

)
, (3.28)

h′ = −β
s

2
y − α

s

2
h. (3.29)

To show (ii), plugging (3.27) into (3.29) and integrating from 0 to some s > 0 we obtain

z(s) − 1

s

∫ s

0
z(σ ) dσ = − 4

βs

(
h(s) − h(0) +

α

2

∫ s

0
σh(σ) dσ

)
. (3.30)

Also, using the above identity,

d

ds

(
1

s

∫ s

0
z(σ ) dσ

)
= − 4

βs2

(
h(s) − h(0) +

α

2

∫ s

0
σh(σ) dσ

)
. (3.31)

Now, since from part (i) |h(s)| � 8E0
c0

e−αs2/4, both h and α
∫ s

0 σh(σ) dσ are bounded functions,

thus from (3.31) it follows that the limit of 1
s

∫ s

0 z exists, as s → ∞. Hence (3.30) and previous
observations conclude that the limit z∞ := lims→∞ z(s) exists and furthermore

z∞ := lim
s→∞ z(s) = lim

s→∞
1

s

∫ s

0
z(σ ). (3.32)

We continue to prove (iii). Integrating (3.31) between s > 0 and +∞ and using integration
by parts, we obtain

z∞ − 1

s

∫ s

0
z(σ ) dσ = − 4

β

∫ ∞

s

h(σ )

σ 2
dσ +

4

β

h(0)

s
− 2α

β

[
1

s

∫ s

0
σh(σ) dσ +

∫ ∞

s

h(σ ) dσ

]
.

(3.33)

From (3.30) and (3.33), we get

z(s) − z∞ = − 4

β

h(s)

s
+

2α

β

∫ ∞

s

h(σ ) dσ +
4

β

∫ ∞

s

h(σ )

σ 2
. (3.34)

In order to compute the integrals in (3.34), using (3.27) and (3.28), we write

h = 2

β

(
y ′

s
+

α

4
z′ − 2E0

s
e−αs2/2 +

c2
0

2s
ze−αs2/2

)
.
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Then, integrating by parts and using the bound for y in (3.24),∫ ∞

s

h(σ ) = 2

β

(
−y

s
+

∫ ∞

s

y

σ 2
+

α

4
(z∞ − z) − 2E0

∫ ∞

s

e−ασ 2/2

σ
+

c2
0

2

∫ ∞

s

z

σ
e−ασ 2/2

)
.

(3.35)

Also, we obtain from (3.27)∫ ∞

s

h(σ )

σ 2
= 2

β

(∫ ∞

s

y ′

σ 3
+

α

2

∫ ∞

s

y

σ 2
− 2E0

∫ ∞

s

e−ασ 2/2

σ 3
+

c2
0

2

∫ ∞

s

z

σ 3
e−ασ 2/2

)
. (3.36)

Multiplying (3.34) by β2, using (3.35), (3.36) and the identity

α

∫ ∞

s

e−ασ 2/2

σn
= e−αs2/2

sn+1
− (n + 1)

∫ ∞

s

e−ασ 2/2

σn+2
, for all α � 0, n � 1, (3.37)

we conclude that

(α2 + β2)(z − z∞) = −4

s
(αy + βh) − 8E0

s2
e−αs2/2

+8α

∫ ∞

s

y

σ 2
+ 8

∫ ∞

s

y ′

σ 3
+ 2c2

0

∫ ∞

s

e−ασ 2/2z

(
α

σ
+

2

σ 3

)
. (3.38)

Finally, using (3.27) and the boundedness of z and y, an integration by parts argument shows
that

8α

∫ ∞

s

y

σ 2
+ 8

∫ ∞

s

y ′

σ 3
= −4α

z

s2
− 8

y

s3
− 12

z

s4
+ 8

∫ ∞

s

z

(
α

σ 3
+

6

σ 5

)
. (3.39)

Bearing in mind that α2 + β2 = 1, from (3.38) and (3.39), we obtain the following identity

z − z∞ = −4

s
(αy + βh) − 8E0

s2
e−αs2/2 − 4α

z

s2
− 8

y

s3
− 12

z

s4
+ 8

∫ ∞

s

z

(
α

σ 3
+

6

σ 5

)
dσ

+2c2
0

∫ ∞

s

e−ασ 2/2z

(
α

σ
+

2

σ 3

)
dσ, (3.40)

for all s > 0. In order to prove (iii), we first write z = z − z∞ + z∞ and observe that

8α

∫ ∞

s

z

σ 3
= 8α

∫ ∞

s

z − z∞
σ 3

+
4αz∞

s2
,∫ ∞

s

z

σ 5
=

∫ ∞

s

z − z∞
σ 5

+
z∞
4s4

and∫ ∞

s

e−ασ 2/2z

(
α

σ
+

2

σ 3

)
=

∫ ∞

s

e−ασ 2/2(z − z∞)

(
α

σ
+

2

σ 3

)
+

z∞
s2

e−αs2/2,

where we have used (3.37) in obtaining the last identity. Therefore, we can recast (3.40) as
(3.25) with

R0(s) = −4α(z − z∞)

s2
− 8y

s3
− 12(z − z∞)

s4
+ 8

∫ ∞

s

(z − z∞)

(
α

σ 3
+

6

σ 5

)
dσ

+2c2
0

∫ ∞

s

e−ασ 2/2(z − z∞)

(
α

σ
+

2

σ 3

)
dσ. (3.41)

Let us take s0 � 1 to be fixed in what follows. For t � s0, we denote ‖·‖t the norm of
L∞([t, ∞)). From the definition of R0 in (3.41) and the elementary inequalities

α

∫ ∞

s

e−ασ 2/2

σn
� e−αs2/2

sn+1
, for all α � 0, n � 1, (3.42)
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and ∫ ∞

s

e−ασ 2/2

σn
� e−αs2/2

(n − 1)sn−1
, for all α � 0, n > 1, (3.43)

we obtain

‖R0‖t � 8‖y‖t

t3
+

4

t2

(
8 + c2

0e−αt2/2
)

‖z − z∞‖t .

Hence, choosing s0 = 4
√

8 + c2
0, so that 4

t2

(
8 + c2

0e−αt2/2
)

� 1/2, from (3.24) and (3.25) we

conclude that there exists a constant C(E0, c0) > 0 such that

‖z − z∞‖t � C(E0, c0)

t
e−αt2/4, for all α ∈ [0, 1) and t � s0,

which implies that

|z(s) − z∞| � C(E0, c0)

s
e−αs2/4, for all α ∈ [0, 1), s � s0. (3.44)

Finally, plugging (3.24) and (3.44) into (3.41) and bearing in mind the inequalities (3.42)
and (3.43), we deduce that

|R0(s)| � C(E0, c0)
e−αs2/4

s3
, ∀ s � s0 = 4

√
8 + c2

0, (3.45)

and the proof of (iii) is completed. �

Formula (3.25) in proposition 3.2 gives z in terms of y and h. Therefore, we can reduce our
analysis to that of the variables y and h or, in other words, to that of the system (3.27)–(3.29).
In fact, a first attempt could be to define w = y + ih, so that from (3.28) and (3.29), we have
that w solves (

we(α+iβ)s2/4
)′

= e(−α+iβ)s2/4

(
γ − c2

0

2
(z − z∞)

)
. (3.46)

From (3.44) in proposition 3.2 and (3.46), we see that the limit w∗ = lims→∞ w(s)e(α+iβ)s2/4

exists (at least when α 
= 0), and integrating (3.46) from some s > 0 to ∞ we find that

w(s) = e−(α+iβ)s2/4

(
w∗ −

∫ ∞

s

e(−α+iβ)σ 2/4

(
γ − c2

0

2
(z − z∞)

)
dσ

)
.

In order to obtain an asymptotic expansion, we need to estimate
∫ ∞
s

e(−α+iβ)σ 2/4(z − z∞), for
s large. This can be achieved using (3.44),∣∣∣∣

∫ ∞

s

e(−α+iβ)σ 2/4(z − z∞) dσ

∣∣∣∣ � C(E0, c0)

∫ ∞

s

e−ασ 2/2

σ
dσ (3.47)

and the asymptotic expansion∫ ∞

s

e−ασ 2/2

σ
dσ = e−αs2/2

(
1

αs2
− 2

α2s4
+

8

α3s6
+ · · ·

)
.

However this estimate diverges as α → 0. The problem is that the bound used in obtaining
(3.47) does not take into account the cancellations due to the oscillations. Therefore, and in
order to obtain the asymptotic behaviour of z, y and h valid for all α ∈ [0, 1), we need a more
refined analysis. In the next proposition we study the system (3.27)–(3.29), where we consider
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the cancellations due the oscillations (see lemma 3.5 below). The following result provides
estimates that are valid for s � s1, for some s1 independent of α, if α is small.

Proposition 3.3. With the same notation and terminology as in proposition 3.2, let

s1 = max

{
4
√

8 + c2
0, 2c0

(
1

β
− 1

)1/2
}

.

Then for all s � s1,

y(s) = be−αs2/4 sin(φ(s1; s)) − 2αγ

s
e−αs2/2 + O

(
e−αs2/2

β2s2

)
, (3.48)

h(s) = be−αs2/4 cos(φ(s1; s)) − 2βγ

s
e−αs2/2 + O

(
e−αs2/2

β2s2

)
, (3.49)

where

φ(s1; s) = a + β

∫ s2/4

s2
1 /4

√
1 + c2

0

e−2αt

t
dt,

a ∈ [0, 2π) is a real constant, and b is a positive constant given by

b2 =
(

2E0 − c2
0

4
z∞

)
z∞. (3.50)

Proof. First, notice that plugging the expression for z(s)−z∞ in (3.25) into (3.28), the system
(3.28)–(3.29) for the variables y and h rewrites equivalently as

y ′ = s

2
(βh − αy) +

2c2
0

s
e−αs2/2(βh + αy) + γ e−αs2/2 + R1(s), (3.51)

h′ = − s

2
(βy + αh), (3.52)

where

R1(s) = −c2
0

2
e−αs2/2R0(s) +

2c2
0γ e−αs2

s2
, (3.53)

and R0 is given by (3.41).
Introducing the new variables,

u(t) = eαty(2
√

t), v(t) = eαth(2
√

t), (3.54)

we recast (3.51)–(3.52) as(
u

v

)′
=

(
αK β(1 + K)

−β 0

) (
u

v

)
+

(
F

0

)
, (3.55)

with

K = c2
0e−2αt

t
, F = γ

e−αt

√
t

+
e−αt

√
t

R1(2
√

t),

where R1 is the function defined in (3.53). In this way, we can regard (3.55) as a non-
autonomous system. It is straightforward to check that the matrix

A =
(

αK β(1 + K)

−β 0

)
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is diagonalizable, i.e. A = PDP −1, with

D =
(

λ+ 0
0 λ−

)
, P =


−αK

2β
− i�1/2 −αK

2β
+ i�1/2

1 1


 ,

λ± = αK

2
± iβ�1/2, and � = 1 + K − α2K2

4β2
. (3.56)

At this point we remark that the condition t � t1, with t1 := s2
1/4 and s1 � 2c0(

1
β

− 1)1/2,
implies that

0 < K

(
1

β
− 1

)
� 1, ∀ t � t1, (3.57)

so that

� = 1 + K − (1 − β2)

4β2
K2 =

(
1 +

K

2
+

K

2β

) (
1 +

K

2

(
1 − 1

β

))
� 1

2
, ∀ t � t1.

(3.58)

Thus, defining

ω = (ω1, ω2) = P −1(u, v), (3.59)

we get (
e− ∫ t

t1
D
ω

)′
= e− ∫ t

t1
D

(
(P −1)′Pω + P −1F̃

)
, (3.60)

with F̃ = (F, 0). From the definition of ω and taking into account that u and v are real
functions, we have that ω1 = ω̄2 and therefore the study of (3.60) reduces to the analysis of
the equation: (

e− ∫ t

t1
λ+ω1

)′
= e− ∫ t

t1
λ+G(t), (3.61)

with

G(t) = i
αK ′

4β�1/2
(ω1 + ω̄1) − �′

4�
(ω1 − ω̄1) + i

F

2�1/2
.

From (3.61) we have

ω1(t) = e
∫ t

t1
λ+

(
ω1(t1) + ω∞ −

∫ ∞

t

e− ∫ τ

t1
λ+G(τ) dτ

)
, (3.62)

with

ω∞ =
∫ ∞

t1

e− ∫ τ

t1
λ+G(τ).

Since

ω1 = iu

2�1/2
+

v

2
+

iαKv

4β�1/2
, (3.63)

we recast G as G = i(G1 + G2 + G3) with

G1 = αK ′v
4β�1/2

− �′

4�3/2

(
u +

αKv

2β

)
, G2 = γ e−αt

2t1/2�1/2
and G3 = e−αt

2t1/2�1/2
R1(2t1/2).
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Now, from the definition of K and �, we have

K ′ = −K

(
2α +

1

t

)
, K ′′ = K

((
2α +

1

t

)2

+
1

t2

)
,

�′ =K ′
(

1 − α2K

2β2

)
and �′′ =K

((
2α +

1

t

)2

+
1

t2

) (
1 − α2K

2β2

)
− α2

2β2
K2

(
2α+

1

t

)2

.

Also, since s1 = max{4
√

8 + c2
0, 2c0(1/β − 1)1/2}, for all t � t1 = s2

1/4, we have in particular

that t � 8 + c2
0 and t � c2

0(1/β − 1), hence

c2
0

tβ
= c2

0

t

(
1

β
− 1

)
+

c2
0

t
� 2 (3.64)

and ∣∣∣∣1 − α2K

4β2

∣∣∣∣ � 1 +
1

4β

(
c2

0

tβ

)
� 2

β
. (3.65)

Therefore

|K ′| � c2
0e−2αt

(
2α

t
+

1

t2

)
, |�′| � 2c2

0e−2αt

β

(
2α

t
+

1

t2

)
(3.66)

and

|�′′| � 24c2
0

β
e−2αt

(
α

t
+

1

t2

)
. (3.67)

From proposition 3.2, u and v are bounded in terms of the energy. Thus, from the definition
of G1 and the estimates (3.57), (3.58) and (3.66), we obtain

|G1(t)| � C(E0, c0)e−2αt

β2

(
α

t
+

1

t2

)
.

Since ∣∣∣e± ∫ τ

t1
λ+

∣∣∣ � 2, (3.68)

we conclude that∣∣∣∣
∫ ∞

t

e− ∫ τ

t1
λ+G1(τ ) dτ

∣∣∣∣ � C(E0, c0)

β2

∫ ∞

t

e−2ατ

(
α

τ
+

1

τ 2

)
� C(E0, c0)e−2αt

β2t
. (3.69)

Here we have used the inequality

α

∫ ∞

t

e−2ασ

σ n
dσ � e−2αt

2tn
, n � 1, (3.70)

which follows by integrating by parts.
In order to handle the terms involving G2 and G3, we need to take advantage of the

oscillatory character of the involved integrals, which is exploited in lemma 3.5. From
(3.58), (3.66) and (3.67), straightforward calculations show that the function defined by
f = γ /(2t1/2�1/2) satisfies the hypothesis in part (ii) of lemma 3.5 with a = 1/2 and
L = C(E0, c0)/β. Thus invoking this lemma with f = γ /(2t1/2�1/2) and noticing that

1

�1/2
= 1 +

(
1

�1/2
− 1

)
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and that ∣∣∣∣ 1

�1/2
− 1

∣∣∣∣ =
∣∣∣∣ 1 − �

�1/2(�1/2 + 1)

∣∣∣∣ �
|K|

∣∣∣1 − α2K
4β2

∣∣∣
|�1/2(�1/2 + 1)| � 2

√
2c2

0

βt
,

where we have used (3.58) and (3.65), we conclude that∫ ∞

t

e− ∫ τ

t1
λ+G2(τ ) dτ = γ

2(α + iβ)t1/2
e− ∫ t

t1
λ+ e−αt + R2(t), (3.71)

with

|R2(t)| � C(E0, c0)e−αt

β2t3/2
.

For G3, we first write explicitly (recall the definition of R1 in (3.53))

G3(t) = −c2
0R0(2

√
t)e−3αt

4t1/2�1/2
+

c2
0γ e−5αt

4t3/2�1/2
: = G3,1(t) + G3,2(t). (3.72)

Using (3.45) and (3.58), we see that |G3,1(t)| � C(E0, c0)e−4αt/t2, so that we can treat this
term as we did for G1 to obtain∣∣∣∣

∫ ∞

t

e− ∫ τ

t1
λ+G3,1(τ ) dτ

∣∣∣∣ � C(E0, c0)e−4αt

t
. (3.73)

For the second term, using (3.58), (3.66) and (3.64), it is easy to see that the function f defined
by f = (c2

0γ )/(4t3/2�1/2) satisfies

|f (t)| � C(E0, c0)

t3/2
and |f ′(t)| � C(E0, c0)

(
α

t3/2
+

1

t5/2

)
,

as a consequence, invoking part (i) of lemma 3.5, we obtain∣∣∣∣
∫ ∞

t

e− ∫ τ

t1
λ+G3,2(τ ) dτ

∣∣∣∣ � C(E0, c0)e−5αt

βt3/2
. (3.74)

From (3.62), (3.68), (3.69), (3.73) and (3.74), we deduce that

ω1(t) = e
∫ t

t1
λ+ (ω1(t1) + ω∞) − γ (β + iα)

2t1/2
e−αt + R3(t) with |R3(t)| � C(E0, c0)e−αt

β2t
.

(3.75)

Now we claim that

e
∫ t

t1
λ+ = Cα,c0 eiβI (t) + H(t), with I (t) =

∫ t

t1

√
1 + K(σ) dσ, |H(t)| � 3c2

0e−2αt

t
,

(3.76)

and

Cα,c0 = exp

(
α

2

∫ ∞

t1

K dσ

)
exp

(
−i

α2

4β

∫ ∞

t1

K2

�1/2 + (1 + K)1/2
dσ

)
.

Indeed, recall that λ+ = αK
2 + iβ�1/2 so that

e
∫ t

t1
λ+ = eα

∫ t

t1
K
2 eiβ

∫ t

t1
�1/2

. (3.77)

First, we notice that

α

∫ t

t1

K

2
= c2

0α

∫ ∞

t1

e−2ασ

2σ
− c2

0α

∫ ∞

t

e−2ασ

2σ
.
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Using (3.70) and the inequality |1 − e−x | � x, for x � 0, with x = c2
0α

∫ ∞
t

e−2ασ

2σ
, we can write

exp

(
−c2

0α

∫ ∞

t

e−2ασ

2σ

)
= 1 + H1(t),

with

|H1(t)| � c2
0e−2αt

4t
, for all t > 0. (3.78)

The above argument shows that

eα
∫ t

t1
K
2 = eα

∫ ∞
t1

K
2 (1 + H1(t)), (3.79)

with H1(t) satisfying (3.78).
For the second term of the eigenvalue, using the definition of � in (3.56), we write

iβ

∫ t

t1

�1/2 = iβ

∫ t

t1

(
�1/2 −

√
1 + K

)
+ iβ

∫ t

t1

√
1 + K

= −i
α2

4β

∫ t

t1

K2

�1/2 + (1 + K)1/2
+ iβ

∫ t

t1

√
1 + K.

Proceeding as before and using that |1 − eix | � |x|, for x ∈ R, and that

α

∫ ∞

t

K2

�1/2 +
√

1 + K
� α

∫ ∞

t

K2(σ ) dσ = αc4
0

∫ ∞

t

e−4ατ

τ 2
� c4

0e−4αt

4t2
,

we conclude that

eiβ
∫ t

t1
�1/2 = eiβI (t)e

−i α2

4β

∫ ∞
t1

K2

�1/2+(1+K)1/2 (1 + H2), (3.80)

with

|H2(t)| � c4
0e−4αt

16βt2
� c2

0e−4αt

8t
,

bearing in mind (3.64). Therefore, from (3.77), (3.79) and (3.80),

e
∫ t

t1
λ+ = Cα,c0 eiβI (t)(1 + H1(t))(1 + H2(t)).

The claim follows from the above identity, the bounds for H1 and H2, and the fact that Cα,c0

satisfies that |Cα,c0 | = |e
∫ ∞
t1

λ+ | � 2 (see (3.68)). From (3.75), the claim and writing

Cα,c0(ω1(t1) + ω∞) = (beia)/2 (3.81)

for some real constants a and b such that b � 0 and a ∈ [0, 2π), it follows that

ω1(t) = b

2
ei(βI (t)+a) − γ (β + iα)e−αt

2t1/2
+ Rω1(t) with |Rω1(t)| � C(E0, c0)e−αt

β2t
. (3.82)

The above bound for Rω1(t) easily follows from the bounds for R3(t) and H(t) in (3.75) and
(3.76) respectively, and the fact that

|ω1(t)| � C(E0, c0), ∀ t � t1. (3.83)

This last inequality is a consequence of (3.54), (3.58), (3.63), (3.64) and the bounds for y and
h established in (3.24) in proposition 3.2.

Going back to the definition of ω in (3.59), we have (u, v) = P(ω1, ω2), that is

u = −αK

2β
(ω1 + ω̄1) − i�1/2(ω1 − ω̄1) = 2 Im(ω1) + R4(t),

v = (ω1 + ω̄1) = 2 Re(ω1),

(3.84)
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with

|R4(t)| =
∣∣∣∣−αK

β
Re(ω1) + 2(�1/2 − 1)Im(ω1)

∣∣∣∣
� K

β
|Re(ω1)| + 2

|� − 1|
�1/2 + 1

|Im(ω1)|

� 2c2
0e−2αt

βt
(|Re(ω1)| + |Im(ω1)|) � C(E0, c0)e−2αt

βt
,

where we have used (3.58), (3.65), and (3.83). From (3.82) and (3.84), we obtain

u(t) = b sin(βI (t) + a) − αγ

t1/2
e−αt + R5(t),

v(t) = b cos(βI (t) + a) − βγ

t1/2
e−αt + R6(t),

with

|R5(t)| + |R6(t)| � C(E0, c0)e
−αt/(β2t).

The asymptotics for y and h given in (3.48) and (3.49) are a direct consequence of (3.54) and
the above identities and bounds.

Finally, we compute the value of b. In fact, from (3.48) and (3.49)

lim
s→∞(y2(s) + h2(s))eαs2/2 = b2.

On the other hand, since y + ih = f̄ f ′ and using the conservation of energy (3.16)(
y2(s) + h2(s)

)
eαs2/2 = |y + ih|2(s)eαs2/2 = |f ′(s)|2|f (s)|2eαs2/2

= (2E0 − c2
0

4
|f (s)|2)|f (s)|2,

so that, taking the limit as s → ∞ and recalling that z = |f |2, (3.50) follows. �

Remark 3.4. From the definitions of b in (3.50), and beia in (3.81) (in terms of Cα,c0 , ω1(t1)

and ω∞ in (3.81)), it is simple to verify that b and beia depend continuously on α ∈ [0, 1),
provided that z∞ is a continuous function of α. In section 3.3 we will prove that z∞ depends
continuously on α, for α ∈ [0, 1], and establish the continuous dependence of the constants b

and beia with respect to the parameter α in lemma 3.13 above.

In the proof of proposition 3.3, we have used the following key lemma that establishes the
control of certain integrals by exploiting their oscillatory character.

Lemma 3.5. With the same notation as in the proof of proposition 3.3.

(i) Let f ∈ C1((t1, ∞)) such that

|f (t)| � L/ta and |f ′(t)| � L

(
α

ta
+

1

ta+1

)
,

for some constants L, a > 0. Then, for all t � t1 and l � 1∫ ∞

t

e− ∫ τ

t1
λ+ e−lατ f (τ ) dτ = 1

(lα + iβ)
e− ∫ t

t1
λ+ e−lαtf (t) + F(t), (3.85)

with

|F(t)| � C(l, a, c0)Le−lαt

βta
. (3.86)
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(ii) If in addition f ∈ C2((t1, ∞)),

|f ′(t)| � L/ta+1 and |f ′′(t)| � L

(
α

ta+1
+

1

ta+2

)
, (3.87)

then

|F(t)| � C(l, a, c0)Le−lαt

βta+1
. (3.88)

Here C(l, a, c0) is a positive constant depending only on l, a and c0.

Proof. Define λ = λ+. Recall (see proof of proposition 3.2) that

λ+ = αK

2
+ iβ�1/2 and � = 1 + K − α2K2

4β2
, with K = c2

0
e−2αt

t
.

Setting Rλ = 1/λ − 1/(iβ) and integrating by parts, we obtain(
1 +

lα

iβ

) ∫ ∞

t

e− ∫ τ

t1
λe−lατ f (τ ) dτ = e− ∫ t

t1
λe−lαtf (t)

(
1

iβ
+ Rλ

)

+
∫ ∞

t

e− ∫ τ

t1
λe−lατ

(
−lαf Rλ +

f ′

λ
− f λ′

λ2

)
dτ,

or, equivalently,∫ ∞

t

e− ∫ τ

t1
λe−ατ f (τ ) dτ = 1

lα + iβ
e− ∫ t

t1
λe−αtf (t) + F(t),

with

F(t) = iβ

lα + iβ

(
e− ∫ t

t1
λe−lαtRλf +

∫ ∞

t

e− ∫ τ

t1
λe−lατ

(
−lαf Rλ +

f ′

λ
− f λ′

λ2

)
dτ

)
.

Using (3.58), (3.64) and (3.66), it is easy to check that for all t � t1

|λ| � β√
2

and |λ′| � 3c2
0

(
2α

t
+

1

t2

)
. (3.89)

On the other hand,

|Rλ| =
∣∣∣∣ iβ − λ

iβλ

∣∣∣∣ �
√

2

β2

(
β|1 − �1/2| +

αK

2

)
,

with, using the definition of � in (3.58) and (3.64),

αK

2
� c2

0

2t
and |1 − �1/2| = |1 − �|

1 + �1/2
� |1 − �| � c2

0

t
+

c2
0

4βt

(
c2

0

βt

)
� 2c2

0

βt
.

Previous lines show that

|Rλ| � 10c2
0

β2t
. (3.90)

The estimate (3.86) easily follows from the bounds (3.68), (3.70), (3.89), (3.90) and the
hypotheses on f . To obtain part (ii) we only need to improve the estimate for the term∫ ∞

t

e− ∫ τ

t1
λe−lατ f ′

λ
dτ

in the above argument. In particular, it suffices to prove that∣∣∣∣
∫ ∞

t

e− ∫ τ

t1
λe−lατ f ′

λ

∣∣∣∣ � C(l, c0, a)
Le−lαt

β2ta+1
.
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Now, consider the function g = f ′/λ. Notice that from (3.64), (3.89) and the hypotheses on
f in (3.87), we have

|g(t)| �
√

2L

βta+1
(3.91)

and

|g′(t)| �
√

2

β
L

(
α

ta+1
+

1

ta+2

)
+

6L

β

(
c2

0

βt

) (
2α

ta+1
+

1

ta+2

)

� 14L

β

(
2α

ta+1
+

1

ta+2

)
.

Then, we can apply the identity (3.85) to the function g, with ã = a + 1 and L̃ = 28L/β∫ ∞

t

e− ∫ τ

t1
λe−lατ g = 1

(lα + iβ)
e− ∫ t

t1
λ+ e−lαtg(t) + G(t),

for some function G satisfying

|G(t)| � C(l, ã, c0)L̃e−lαt

βt ã
= 28C(l, a + 1, c0)Le−lαt

β2ta+1
.

Therefore, using (3.68) and (3.91), we obtain∣∣∣∣
∫ ∞

t

e− ∫ τ

t1
λe−lατ g

∣∣∣∣ � C(l, c0, a)Le−lαt

(
1

βta+1
+

1

β2ta+1

)
� C(l, c0, a)Le−lαt

β2ta+1
, (3.92)

as desired. �

We remark that if α ∈ [0, 1/2], the asymptotics in proposition 3.3 are uniform in α.
Indeed,

max
α∈[0,1/2]

{
4
√

8 + c2
0, 2c0

(
1

β
− 1

)1/2
}

= 4
√

8 + c2
0 = s0.

Therefore in this situation we can omit the dependence on s1 in the function φ(s1; s), because
the asymptotics are valid with

φ(s) := φ(s0; s) = a + β

∫ s2/4

s2
0 /4

√
1 + c2

0

e−2αt

t
dt. (3.93)

We continue to show that the factor 1/β2 in the big-O in formulae (3.48) and (3.49) are
due to the method used and this factor can be avoided if α is far from zero. More precisely,
we have the following:

Lemma 3.6. Let α ∈ [1/2, 1). With the same notation as in Propositions 3.2 and 3.3, we have
the following asymptotics: for all s � s0,

y(s) = be−αs2/4 sin(φ(s)) − 2αγ

s
e−αs2/2 + O

(
e−αs2/2

s2

)
, (3.94)

h(s) = be−αs2/4 cos(φ(s)) − 2βγ

s
e−αs2/2 + O

(
e−αs2/2

s2

)
. (3.95)

Here, the function φ is defined by (3.93) and the bounds controlling the error terms depend on
c0, and the energy E0, and are independent of α ∈ [1/2, 1).
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Proof. Let α ∈ [1/2, 1) and define w = y + ih. From proposition 3.3 and (1.21), we have that
for all α ∈ [1/2, 1)

lim
s→∞ we(α+iβ)s2/4 = bie−iã , (3.96)

where ã := a + C(α, c0), a and b are the constants defined in proposition 3.3 and C(α, c0) is
the constant in (1.21). Then, since w satisfies(

we(α+iβ)s2/4
)′

= e(−α+iβ)s2/4

(
γ − c2

0

2
(z − z∞)

)
, (3.97)

integrating the above identity between s and infinity,

we(α+iβ)s2/4 = ibe−iã −
∫ ∞

s

e(−α+iβ)σ 2/4

(
γ − c2

0

2
(z − z∞)

)
dσ.

Now, integrating by parts and using (3.42) (recall that 1 � 2α), we see that∫ ∞

s

e(−α+iβ)σ 2/4 dσ = 2(α + iβ)
e(−α+iβ)s2/4

s
+ O

(
e−αs2/4

s3

)
, ∀ s � s0.

Next, notice that from (3.44) in proposition 3.2, we also obtain∫ ∞

s

e(−α+iβ)σ 2/4(z − z∞) dσ = O

(
e−αs2/2

s2

)
, ∀ s � s0.

The above argument shows that for all s � s0

w(s) = ibe−αs2/4e−i(ã+βs2/4) − 2(α + iβ)γ

s
e−αs2/2 + O

(
e−αs2/2

s2

)
. (3.98)

The asymptotics for y and h in the statement of the lemma easily follow from (3.98) bearing
in mind that w = y + ih and recalling that the function φ behaves like (1.21) when α > 0. �

In the following corollary we summarize the asymptotics for z, y and h obtained in this
section. Precisely, as a consequence of proposition 3.2-(iii), proposition 3.3 and lemma 3.6,
we have the following:

Corollary 3.7. Let α ∈ [0, 1). With the same notation as before, for all s � s0 = 4
√

8 + c2
0,

y(s) = be−αs2/4 sin(φ(s)) − 2αγ

s
e−αs2/2 + O

(
e−αs2/2

s2

)
, (3.99)

h(s) = be−αs2/4 cos(φ(s)) − 2βγ

s
e−αs2/2 + O

(
e−αs2/2

s2

)
, (3.100)

z(s) = z∞ − 4b

s
e−αs2/4(α sin(φ(s)) + β cos(φ(s))) +

4γ e−αs2/2

s2
+ O

(
e−αs2/4

s3

)
, (3.101)

where

φ(s) = a + β

∫ s2/4

s2
0 /4

√
1 + c2

0

e−2αt

t
dt,

for some constant a ∈ [0, 2π),

b = z1/2
∞

(
2E0 − c2

0

4
z∞

)1/2

, γ = 2E0 − c2
0

2
z∞ and z∞ = lim

s→∞ z(s).

Here, the bounds controlling the error terms depend on c0 and the energy E0, and are
independent of α ∈ [0, 1).
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Remark 3.8. In the case when s < 0, the same arguments to the ones leading to the asymptotics
in the above corollary will lead to an analogous asymptotic behaviour for the variables z, h

and y for s < 0. As mentioned at the beginning of section 3.2, here we have reduced ourselves
to the case of s > 0 when establishing the asymptotic behaviour of the latter quantities due to
the parity of the solution we will be applying these results to.

Remark 3.9. The asymptotics in corollary 3.7 lead to the asymptotics for the solutions f of the
equation (3.20), at least if |f |∞ := z

1/2
∞ is strictly positive. Indeed, this implies that there exists

s∗ � s0 such that f (s) 
= 0 for all s � s∗. Then writing f in its polar form f = ρ exp(iθ),
we have ρ2θ ′ = Im(f̄ f ′). Hence, using (3.22), we obtain ρ = z1/2 and θ ′ = h/z. Therefore,
for all s � s∗,

θ(s) − θ(s∗) =
∫ s

s∗

h(σ)

z(σ )
dσ. (3.102)

Hence, using the asymptotics for z and h in corollary 3.7, we can obtain the asymptotics for f .
In the case that α ∈ (0, 1], we can also show that the phase converges. Indeed, the asymptotics
in corollary 3.7 yield that the integral in (3.102) converges as s → ∞ for α > 0, and we
conclude that there exists a constant θ∞ ∈ R such that

f (s) = z(s)1/2 exp

(
iθ∞ − i

∫ ∞

s

h(σ )

z(σ )
dσ

)
, for all s � s∗.

The asymptotics for f is obtained by plugging the asymptotics in corollary 3.7 into the above
expression.

3.3. The second-order equation. Dependence on the parameters

The aim of this subsection is to study the dependence of the f , z, y and h on the parameters
c0 > 0 and α ∈ [0, 1]. This will allow us to pass to the limit α → 1− in the asymptotics in
corollary 3.7 and will give us the elements for the proofs of theorems 1.3 and 1.4.

3.3.1. Dependence on α. We will denote by f (s, α) the solution of (3.20) with some initial
conditions f (0, α), f ′(0, α) that are independent of α. Indeed, we are interested in initial
conditions that depend only on c0 (see (3.13)–(3.15)). Moreover, in view of (3.17), we assume
that the energy E0 in (3.16) is a function of c0. In order to simplify the notation, we denote
with a subindex α the derivative with respect to α and by ′ the derivative with respect to s.
Analogously to section 3.2, we define

z(s, α) = |f (s, α)|2, y(s, α) = Re(f̄ (s, α)f ′(s, α)), h(s, α) = Im(f̄ (s, α)f ′(s, α))

(3.103)

and

z∞(α) = lim
s→∞ |f (s, α)|2.

Observe that in proposition 3.2-(ii), we proved the existence of z∞(α), for α ∈ [0, 1). For
α ∈ (0, 1], the estimates in (3.24) hold true and hence z(s, α) is a bounded function whose
derivative decays exponentially. Therefore, it admits a limit at infinity for all α ∈ [0, 1] and
z∞(1) is well-defined.

The next lemma provides estimates for zα , hα and yα .
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Lemma 3.10. Let α ∈ (0, 1). There exists a constant C(c0), depending on c0 but not on α,
such that for all s � 0,

|zα(s, α)| � C(c0) min

{
s2

√
1 − α

+ s3,
s2

√
α(1 − α)

,
1

α2
√

1 − α

}
, (3.104)

|yα(s, α)| + |hα(s, α)| � C(c0)e
−αs2/4 min

{
s2

√
1 − α

+ s3,
s2

√
α(1 − α)

}
. (3.105)

Proof. By classical results from the ODE theory, the function f (s, α) is smooth in R × [0, 1)

(see e.g. [10]). Differentiating (3.12) with respect to α,

f ′′
α +

s

2
(α + iβ)f ′

α +
c2

0

4
fαe−αs2/2 = g, (3.106)

where

g(s, α) = −
(

1 − i
α

β

)
s

2
f ′ +

c2
0s

2

8
f e−αs2/2.

Also, since the initial conditions do not depend on α,

fα(0, α) = f ′
α(0, α) = 0. (3.107)

Using the estimates in (3.23) and that α2 + β2 = 1, we obtain

|g| � C(c0)

(
s

β
e−αs2/4 + s2e−αs2/2

)
, for all s � 0. (3.108)

Multiplying (3.106) by f̄ ′
α and taking real part, we have

1

2

(|f ′
α|2)′

+
αs

2
|f ′

α|2 +
c2

0

8

(|fα|2)′
e−αs2/2 = Re(gf̄ ′

α). (3.109)

Multiplying (3.109) by 2eαs2/2 and integrating, taking into account (3.107),

|f ′
α|2eαs2/2 +

c2
0

4
|fα|2 = 2

∫ s

0
eασ 2/2 Re(gf̄ ′

α) dσ. (3.110)

Let us define the real-valued function η = |f ′
α|eαs2/4. Then (3.110) yields

η2(s) � 2
∫ s

0
eασ 2/4|g|η dσ, for all s � 0.

Thus, by the Gronwall inequality (see e.g. [8, Lemma A.5]),

η(s) �
∫ s

0
eασ 2/4|g| dσ, for all s � 0. (3.111)

From (3.108), (3.110) and (3.111), we conclude that

(|f ′
α|eαs2/4 +

c0

2
|fα|)2 � 2(|f ′

α|2eαs2/2 +
c2

0

4
|fα|2)

� 4
∫ s

0
eασ 2/4|g|η dσ � 4

(
sup

σ∈[0,s]
η(σ )

) (∫ s

0
eασ 2/4|g| dσ

)

� 4

(∫ s

0
eασ 2/4|g| dσ

)2

.

Thus, using (3.108), from the above inequality it follows

|f ′
α|eαs2/4 +

c0

2
|fα| � C(c0)

∫ s

0

(
σ

β
+ σ 2e−ασ 2/4

)
dσ, for all s � 0. (3.112)
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In particular, for all s � 0,

|fα(s)| � C(c0) min

{
s2

√
1 − α

+ s3,
s2

√
α(1 − α)

}
,

|f ′
α(s)| � C(c0)e

−αs2/4 min

{
s2

√
1 − α

+ s3,
s2

√
α(1 − α)

}
, (3.113)

where we have used that∫ s

0
σ 2e−ασ 2/4 dσ � s2

∫ s

0
e−ασ 2/4 dσ � s2

√
π/α.

Notice that from (3.107) and (3.113),

|fα(s)| �
∫ s

0
|f ′

α| dσ � C(c0)√
α(1 − α)

∫ s

0
σ 2e−ασ 2/4 dσ,

and ∫ ∞

0
σ 2e−ασ 2/4 dσ = 2

√
π

α3/2
, (3.114)

so that

|fα(s)| � C(c0)

α2
√

1 − α
. (3.115)

On the other hand, differentiating the relations in (3.103) with respect to α,

|zα| � 2|fα| |f |, |yα + ihα| � |fα| |f ′| + |f | |f ′
α|. (3.116)

By putting together (3.23), (3.113), (3.115) and (3.116), we obtain (3.104) and (3.105). �

Lemma 3.11. The function z∞ is continuous in (0, 1]. More precisely, there exists a constant
C(c0) depending on c0 but not on α, such that

|z∞(α2) − z∞(α1)| � C(c0)

L(α2, α1)
|α2 − α1|, for all α1, α2 ∈ (0, 1], (3.117)

where

L(α2, α1) := α2
1α

3/2
2

(
α

3/2
1

√
1 − α2 + α

3/2
2

√
1 − α1

)
.

In particular,

|z∞(1) − z∞(α)| � C(c0)
√

1 − α, for all α ∈ [1/2, 1]. (3.118)

Proof. Let α1, α2 ∈ (0, 1], α1 < α2. By classical results from the ODE theory, the functions
y(s, α), h(s, α) and z(s, α) are smooth in R × [0, 1) and continuous in R × [0, 1] (see
e.g. [10, 22]). Hence, integrating (3.27) with respect to s, we deduce that

z∞(α2) − z∞(α1) = 2
∫ ∞

0
(y(s, α2) − y(s, α1)) ds = 2

∫ ∞

0

∫ α2

α1

dy

dµ
(s, µ) dµ ds. (3.119)

To estimate the last integral, we use (3.105)∫ α2

α1

∣∣∣∣ dy

dµ
(s, µ)

∣∣∣∣ dµ � C(c0)
s2

√
α1

∫ α2

α1

e−µs2/4

√
1 − µ

dµ. (3.120)

Now, integrating by parts,∫ α2

α1

e−µs2/4

√
1 − µ

dµ = 2
(√

1 − α1e−α1s
2/4 −

√
1 − α2e−α2s

2/4
)

− s2

2

∫ α2

α1

√
1 − µe−µs2/4 dµ.
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Therefore, by combining with (3.119) and (3.120),

|z∞(α2) − z∞(α1)| � C(c0)√
α1

(√
1 − α1

∫ ∞

0
s2e−α1s

2/4 ds −
√

1 − α2

∫ ∞

0
s2e−α2s

2/4 ds

)
,

and bearing in mind (3.114), we conclude that

|z∞(α2) − z∞(α1)| � C(c0)√
α1

(√
1 − α1

α
3/2
1

−
√

1 − α2

α
3/2
2

)
,

which, after some algebraic manipulations and using that α1, α2 ∈ (0, 1], leads to (3.117). �
The estimate for z∞ near zero is more involved and it is based in an improvement of the

estimate for the derivative of z∞.

Lemma 3.12. The function z∞ is continuous in [0, 1]. Moreover, there exists a constant
C(c0) > 0, depending on c0 but not on α such that for all α ∈ (0, 1/2],

|z∞(α) − z∞(0)| � C(c0)
√

α|ln(α)|. (3.121)

Proof. As in the proof of lemma 3.11, we recall that the functions y(s, α), h(s, α) and z(s, α)

are smooth in any compact subset of R × [0, 1). From now on we will use the identity (3.40)
fixing s = 1. We can verify that the two integral terms in (3.40) are continuous functions at
α = 0, which proves that z∞ is continuous in 0. In view of lemma 3.11, we conclude that z∞
is continuous in [0, 1].

Now we claim that∣∣∣∣dz∞
dα

(α)

∣∣∣∣ � C(c0)
|ln(α)|√

α
, for all α ∈ (0, 1/2]. (3.122)

In fact, once (3.122) is proved, we can compute

|z∞(α) − z∞(0)| =
∣∣∣∣
∫ α

0

dz∞
dµ

(µ)dµ

∣∣∣∣ � C(c0)

∫ α

0

|ln(µ)|√
µ

dµ = 2C(c0)
√

α(|ln(α)| + 2),

which implies (3.121).
It remains to prove the claim. Differentiating (3.40) (recall that s = 1) with respect to α,

and using that y(1, ·), h(1, ·) and z(1, ·) are continuous differentiable in [0, 1/2], we deduce
that there exists a constant C(c0) > 0 such that∣∣∣∣dz∞

dα
(α)

∣∣∣∣ � C(c0) + 8|I1(α)| + 2c2
0|I2(α)|, (3.123)

with

I1(α) =
∫ ∞

1

z

σ 3
+ α

∫ ∞

1

zα

σ 3
+ 6

∫ ∞

1

zα

σ 5
(3.124)

and

I2(α) = −α

2

∫ ∞

1
e−ασ 2/2zσ + α

∫ ∞

1
e−ασ 2/2 zα

σ
+ 2

∫ ∞

1
e−ασ 2/2 zα

σ 3
. (3.125)

By (3.24) and (3.104), z is uniformly bounded and zα grows at most as a cubic polynomial,
so that the first and the last integral in the r.h.s. of (3.124) are bounded independently of
α ∈ [0, 1/2]. In addition, (3.104) also implies that

|zα| = |zα|1/2|zα|1/2 � C(c0)(s
3)1/2

(
1

α2

)1/2

= C(c0)
s3/2

α
, (3.126)

which shows that the remaining integral in (3.124) is bounded.
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Thus, the above argument shows that

|I1(α)| � C(c0) for all α ∈ [0, 1/2]. (3.127)

The same arguments also yield that the first two integrals in the r.h.s. of (3.125) are bounded
by C(c0)α

−1/2. Using once more that |zα| � C(c0)s
2α−1/2, we obtain the following bounds

for the remaining two integrals in (3.125)∣∣∣∣α
∫ s

1
e−ασ 2/2 zα

σ

∣∣∣∣ � C(c0)√
α

∫ ∞

1
ασe−ασ 2/2 dσ = C(c0)√

α
e−α/2 � C(c0)√

α

and ∣∣∣∣2
∫ ∞

1
e−ασ/2 zα

σ 3
dσ

∣∣∣∣ � C(c0)√
α

∫ ∞

1

e−ασ 2/2

σ
dσ � C(c0)

|ln(α)|√
α

.

In conclusion, we have proved that

|I2(α)| � C(c0)
|ln(α)|√

α
,

which combined with (3.123) and (3.127), completes the proof of claim. �
We end this section showing that the previous continuity results allow us to ‘pass to the

limit’ α → 1− in corollary 3.7. Using the notation b(α) = b and a(α) = a for the constants
defined for α ∈ [0, 1) in proposition 3.3 in section 3.2, we have

Lemma 3.13. The value b(α) is a continuous function of α ∈ [0, 1] and the value b(α)e−ia(α)

is continuous function of α ∈ [0, 1) that can be continuously extended to [0, 1]. The function
a(α) has a (possible discontinuous) extension for α ∈ [0, 1] such that a(α) ∈ [0, 2π).

Proof. By lemma 3.12, we have the continuity of z∞ in [0, 1]. Therefore, in view of remark 3.4,
the function beia is a continuous function of α ∈ [0, 1) and by (3.50) b is actually well-defined
and continuous in [0, 1]. Writing

be−ia = b2 · 1

beia
,

we deduce the continuity of be−ia in the points where b does not vanish. If b vanishes in some
point of [0, 1), the continuity of be−ia in that point easily follows from the continuity of b in
[0, 1].

It only remains to prove that the limit

L := lim
α→1−

b(α)e−ia(α) (3.128)

exists. If b(1) = 0, it is immediate that L = 0 and we can give any arbitrary value in [0, 2π)

to a(1). Let us suppose that b(1) > 0. Integrating (3.97), we get

w(s)e(α+iβ)s2/4 = w(s0)e
(α+iβ)s2

0 /4 +
∫ s

s0

e(−α+iβ)σ 2/4

(
γ − c2

0

2
(z − z∞)

)
dσ,

and this relation is valid for any α ∈ (0, 1]. Let α ∈ (0, 1). In view of (3.96), letting s → ∞,
we have

ibe−i(a+C(α,c0)) = w(s0)e
(α+iβ)s2

0 /4 +
∫ ∞

s0

e(−α+iβ)σ 2/4

(
γ − c2

0

2
(z − z∞)

)
dσ, (3.129)

where C(α, c0) is the constant in (1.21). Notice that the r.h.s. of (3.129) is well-defined for
any α ∈ (0, 1] and by the arguments given in the proof of lemma 3.11 and the dominated
convergence theorem, the r.h.s. is also continuous for any α ∈ (0, 1]. Therefore, the limit L in
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(3.128) exists and is given by the r.h.s. of (3.129) evaluated in α = 1 and divided by ie−iC(1,c0).
Moreover,

lim
α→1−

e−ia(α) = L

b(1)
,

so that by the compactness of the unit circle in C, there exists θ ∈ [0, 2π) such that
e−iθ = L/b(1) and we can extend a by defining a(1) = θ . �

The following result summarizes an improvement of corollary 3.7 to include the case
α = 1 and the continuous dependence of the constants appearing in the asymptotics on α.
Precisely, we have the following:

Corollary 3.14. Let α ∈ [0, 1], β � 0 with α2 + β2 = 1 and c0 > 0. Then,

(i) The asymptotics in corollary 3.7 holds true for all α ∈ [0, 1].
(ii) Moreover, the values b and be−ia are continuous functions of α ∈ [0, 1] and each term in

the asymptotics for z, y and h in corollary 3.7 depends continuously on α ∈ [0, 1].
(iii) In addition, the bounds controlling the error terms depend on c0 and are independent of

α ∈ [0, 1].

Proof. Let s � s0 fixed. As noticed in the proof of lemma 3.11, the functions y(s, α), h(s, α),
z(s, α) are continuous in α = 1. In addition, by lemma 3.13 be−ia is continuous in α = 1,
using the definition of φ, it is immediate that b sin(φ(s)) and b cos(φ(s)) are continuous in
α = 1. Therefore the big-O terms in (3.99), (3.100) and (3.101) are also continuous in α = 1.
The proof of the corollary follows by letting α → 1− in (3.99), (3.100) and (3.101). �

3.3.2. Dependence on c0. In this section, we study the dependence of z∞ as a function of
c0, for a fixed value of α. To this aim, we need to take into account the initial conditions given
in (3.13)–(3.15). Let us assume that f is a solution of (3.20) with initial conditions f (0) = k1

and f ′(0) = k2c0, for some constants k1, k2 ∈ C, with the corresponding energy E0 > 0
defined in (3.16). To keep our notation simple, we omit the parameter c0 in the functions f

and z∞. Under these assumptions, we have

Proposition 3.15. Let α ∈ [0, 1] and c0 > 0. Then z∞ is a continuous function of c0 ∈ (0, ∞).
Moreover if α ∈ (0, 1], the following estimate holds∣∣∣∣∣z∞ −

∣∣∣∣f (0) +
f ′(0)

√
π√

α + iβ

∣∣∣∣
2
∣∣∣∣∣ �

√
2E0c0π

α

∣∣∣∣f (0) +
f ′(0)

√
π√

α + iβ

∣∣∣∣ +

(√
2E0c0π

2α

)2

. (3.130)

Proof. Since we are assuming that the initial conditions f (0) and f ′(0) depend smoothly on
c0, by classical results from the ODE theory, the functions f , y, h and z are smooth with respect
to s and c0. From (3.40) with s = 1, we have that z∞ can be written in terms of continuous
functions of c0 (the continuity of the integral terms follows from the dominated convergence
theorem), so that z∞ depends continuously on c0.

To prove (3.130), we multiply (3.20) by e(α+iβ)s2/4, so that

(f ′e(α+iβ)s2/4)′ = −c2
0

4
f (s)e(−α+iβ)s2/4.

Hence, integrating twice, we have

f (s) = f (0) + G(s) + F(s), (3.131)
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with

G(s) = f ′(0)

∫ s

0
e−(α+iβ)σ 2/4 dσ and F(s) = −c2

0

4

∫ s

0
e−(α+iβ)σ 2/4

∫ σ

0
e(−α+iβ)τ 2/4f (τ) dτ dσ.

Since by proposition 3.2 |f (s)| � 2
√

2E0

c0
, we obtain

|F(s)| �
√

2E0c0

2

∫ s

0
e−ασ 2/4

∫ σ

0
e−ατ 2/4 dτ dσ �

√
2E0c0

2
· π

α
. (3.132)

Using (3.131) and the identity,

|z1 + z2|2 = |z1|2 + 2 Re(z̄1z2) + |z2|2, z1, z2 ∈ C,

we conclude that z(s) = |f (s)|2 satisfies

z(s) = |f (0) + G(s)|2 + 2 Re(F̄ (s)(f (0) + G(s))) + |F(s)|2.
Therefore, for all s � 0,

|z(s) − |f (0) + G(s)|2| � 2|F(s)| |f (0) + G(s)| + |F(s)|2.
Hence we can use the bound (3.132) and then let s → ∞. Noticing that

lim
s→∞ G(s) = f ′(0)

∫ ∞

0
e−(α+iβ)σ 2/4 dσ = f ′(0)

√
π√

α + iβ
,

the estimate (3.130) follows. �

4. Proof of the main results

In section 3 we have performed a careful analysis of the equation (3.12), taking also into
consideration the initial conditions (3.13)–(3.15). Therefore, the proofs of our main theorem
consist mainly in coming back to the original variables using the identities (3.18) and (3.19).
For the sake of completeness, we provide the details in the following proofs.

Proof of theorem 1.2. Let α ∈ [0, 1], c0 > 0 and { �mc0,α(·), �nc0,α(·), �bc0,α(·)} be the unique
C∞(R; S

2)-solution of the Serret–Frenet equations (1.6) with curvature and torsion (2.6) and
initial conditions (2.8). In order to simplify the notation, in the rest of the proof we drop the
subindices c0 and α and simply write { �m(·), �n(·), �b(·)} for { �mc0,α(·), �nc0,α(·), �bc0,α(·)}.

First observe that if we define { �M, �N, �B} in terms of { �m, �n, �b} by

�M(s) = (m(−s), −m(−s), −m(−s)),

�N(s) = (−n(−s), n(−s), n(−s)),

�B(s) = (−b(−s), b(−s), b(−s)), s ∈ R,

then { �M, �N, �B} is also a solution of the Serret system (1.6) with curvature and torsion (2.6).
Notice also that

{ �M(0), �N(0), �B(0)} = { �m(0), �n(0), �b(0)}.
Therefore, from the uniqueness of the solution we conclude that

�M(s) = �m(s), �N(s) = �n(s) and �B(s) = �b(s), ∀ s ∈ R.

This proves part (i) of theorem 1.2.
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Second, in section 3 we have seen that one can write the components of the Frenet trihedron
{ �m, �n, �b} as

m1(s) = 2|f1(s)|2 − 1, n1(s) + ib1(s) = 4

c0
eαs2/4f̄1(s)f

′
1(s), (4.1)

mj(s) = |fj (s)|2 − 1, nj (s) + ibj (s) = 2

c0
eαs2/4f̄j (s)f

′
j (s), j ∈ {2, 3}, (4.2)

with fj solution of the second-order ODE (3.12) with initial conditions (3.13)–(3.15)
respectively, and associated initial energies (see (3.17))

E0,1 = c2
0

8
and Ej,1 = c2

0

8
, for j ∈ {2, 3}. (4.3)

Notice that the identities (4.1)–(4.2) rewrite equivalently as


m1,c0,α = 2z1 − 1, n1,c0,α = 4

c0
eαs2/4 y1, b1,c0,α = 4

c0
eαs2/4 h1,

mj,c0,α = zj − 1, nj,c0,α = 2

c0
eαs2/4 yj , bj,c0,α = 2

c0
eαs2/4 hj , j ∈ {2, 3},

(4.4)

in terms of the quantities {zj , yj , hj } defined by

zj = |fj |2, yj = Re(f̄jf
′
j ) and hj = Im(f̄jf

′
j ).

Denote by zj,∞, aj , bj , γj and φj the constants and function appearing in the asymptotics of
{yj , hj , zj } proved in section 3 in corollary 3.14.

Taking the limit as s → +∞ in (4.1)–(4.2), and since | �m(s)| = 1, we obtain that there
exists �A+ = (A+

j )
3
j=1 ∈ S

2 with

A+
1 = 2z1,∞ − 1, A+

j = zj,∞ − 1, for j ∈ {2, 3}. (4.5)

The asymptotics stated in part (ii) of theorem 1.2 easily follows from formulae (4.1)–(4.2) and
the asymptotics for {zj , yj , hj } established in corollary 3.14. Indeed, it suffices to observe
that from the formulae for bj and γj in terms of the initial energies E0,j and zj,∞ given in
corollary 3.14-(i), (4.3) and (4.5) we obtain

b2
1 = c2

0

16
(1 − (A+

1)
2), b2

2 = c2
0

4
(1 − (A+

2)
2), b2

3 = c2
0

4
(1 − (A+

3)
2), (4.6)

γ1 = −c2
0

4
A+

1, γ2 = −c2
0

2
A+

2, γ3 = −c2
0

2
A+

3 . (4.7)

Substituting these constants in (3.99), (3.100) and (3.101) in corollary 3.14-(i), we obtain
(1.16), (1.17) and (1.18). This completes the proof of theorem 1.2-(ii).

Proof of theorem 1.1. Let α ∈ [0, 1], and c0 > 0. As before, dropping the subindices, we
will denote by { �m, �n, �b} the unique solution of the Serret–Frenet equations (1.6) with curvature
and torsion (2.6) and initial conditions (2.8). Define

�m(s, t) = �m
(

s√
t

)
. (4.8)

As has been already mentioned (see section 2), part (i) of theorem 1.1 follows from the fact
that the triplet { �m, �n, �b} is a regular-(C∞(R; S

2))3 solution of (1.6)–(2.6)–(2.8) and satisfies
the equation

− s

2
c�n = β(c′ �b − cτ �n) + α(cτ �b + c′ �n).
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Next, from the parity of the components of the profile �m(·) and the asymptotics established in
parts (i) and (ii) in theorem 1.2, it is immediate to prove the pointwise convergence (1.9). In
addition, �A− = (A+

1, −A+
2, −A+

3) in terms of the components of the vector �A+ = (A+
j )

3
j=1.

Now, using the symmetries of �m(·), the change of variables η = s/
√

t gives us

‖ �m(·, t) − �A+χ(0,∞)(·) − �A−χ(−∞,0)(·)‖Lp(R) =
3∑

j=1

(
2t1/2

∫ ∞

0
|mj(η) − A+

j |p dη

)1/p

.

(4.9)

Therefore, it only remains to prove that the last integral is finite. To this end, let s0 = 4
√

8 + c2
0.

On the one hand, notice that since �m and �A+ are unitary vectors,∫ s0

0
|mj(s) − Aj |p ds � 2ps0. (4.10)

On the other hand, from the asymptotics for �m(·) in (1.16), (1.20), and the fact that the vectors
�A+ and �B+ satisfy | �A+|2 = 1 and | �B+|2 = 2, we obtain(∫ ∞

s0

|mj(s) − A+
j |p ds

)1/p

�2
√

2c0(α + β)

(∫ ∞

s0

e−αs2p/4

sp

)1/p

+ 2c2
0

(∫ ∞

s0

e−αs2p/2

s2p

)1/p

+C(c0)

(∫ ∞

s0

e−αs2p/4

s3p

)1/p

. (4.11)

Since the r.h.s. of (4.11) is finite for all p ∈ (1, ∞) if α ∈ [0, 1], and for all p ∈ [1, ∞) if
α ∈ (0, 1], inequality (1.10) follows from (4.9), (4.10) and (4.11). This completes the proof
of theorem 1.1.

Proof of theorem 1.3. The proof is a consequence of proposition 3.15. In fact, recall the
relations (4.5) and (3.17), that is

A+
1 = 2z1,∞ − 1 and A+

j = zj,∞ − 1, for j ∈ {2, 3},
and

E0,1 = c2
0

8
, E0,j = c2

0

4
, for j ∈ {2, 3},

Thus the continuity of �A+
c0,α

with respect to c0 follows from the continuity of z∞ in
proposition 3.15.

Using the initial conditions (3.13)–(3.15), the values for the energies E0,j for j ∈ {1, 2, 3},
and the identity √

π√
α + iβ

=
√

π√
2

(√
1 + α − i

√
1 − α

)
,

we now compute

∣∣∣∣∣fj (0) +
f ′

j (0)
√

π√
α + iβ

∣∣∣∣∣
2

=




1, if j = 1,

1 + c2
0π

4 + c0
√

π√
2

√
1 + α, if j = 2,

1 + c2
0π

4 + c0
√

π√
2

√
1 − α, if j = 3.

(4.12)

Then, substituting the values (4.12) in (3.130) and using the above relations together with the
inequality

√
1 + x � 1 + x/2 for x � 0, we obtain the estimates (1.24)–(1.26).

Proof of theorem 1.4. Recall that the components of �A+
c0,α

are given explicitly in (4.5) in
terms of the functions zj,∞, for j ∈ {1, 2, 3}. The continuity on [0, 1] of A+

j,c0,α
as a function
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of α for j ∈ {1, 2, 3} follows from that of zj,∞ established in lemma 3.12. Notice also that
the estimates (1.31) and (1.32) are an immediate consequence of (3.121) in lemma 3.12 and
(3.118) in lemma 3.11, respectively.

Proof of proposition 1.5. Recall that (see theorem 1.1)

�A−
c0,α

= (A+
1,c0,α

, −A+
2,c0,α

, −A+
3,c0,α

), (4.13)

with A+
j,c0,α

the components of �A+
c0,α

. Therefore �A+
c0,α


= �A−
c0,α

iff A+
1,c0,α


= 1 or −1.
Parts (ii) and (iii) follow from the continuity of A+

1,c0,α
in [0, 1] established in theorem 1.4

bearing in mind that, from the expressions for A+
1,c0,0

in (1.27) and A+
1,c0,1

in (1.30), we have
that A+

1,c0,0

= ±1 for all c0 > 0 and A+

1,c0,1

= ±1 if c0 
= k

√
π with k ∈ N.

In order to prove part (i), we will argue by contradiction. Assume that for some α ∈ (0, 1],
there exists a sequence {c0,n}n∈N such that c0,n > 0, c0,n −→ 0 as n → ∞ and �A+

c0,n,α
= �A−

c0,nα
.

Hence from (4.13) the second and third component of �A+
c0,n,α

are zero. Thus the estimate (1.25)
in theorem 1.3 yields

c0,n

√
π(1 + α)√

2
�

c2
0,nπ

4
+

c2
0,nπ

α
√

2

(
1 +

c2
0,nπ

8
+ c0,n

√
π(1 + α)

2
√

2

)
+

(
c2

0,nπ

2
√

2α

)2

.

Dividing by c0,n > 0 and letting c0,n → 0 as n → ∞, the contradiction follows.

5. Some numerical results and open questions

As has been already pointed out, only in the cases α = 0 and α = 1 we have an explicit formula
for �A+

c0,α
(see (1.27)–(1.30)). Theorems 1.3 and 1.4 give information about the behaviour of

�A+
c0,α

for small values of c0 for a fixed valued of α, and for values of α near to 0 or 1 for a
fixed valued of c0. The aim of this section is to give some numerical results that allow us
to understand the map (α, c0) ∈ [0, 1] × (0, ∞) �→ �A±

c0,α
∈ S

2. For a fixed value of α,
we will discuss first the injectivity and surjectivity (in some appropriate sense) of the map
c0 �→ �A±

c0,α
and second the behaviour of �A+

c0,α
as c0 → ∞. To compute the numerically value

of �A+
c0,α

, we use the command NDSolve in Mathematica to solve the Serret–Frenet equation

(1.6) with initial conditions (1.8). Then we approximate �A±
c0,α

by the value of the solution
for some s large enough, depending on α and c0, to ensure that the solution has numerically
converged.

For fixed α, define θc0,α to be the angle between the unit vectors �A+
c0,α

and − �A−
c0,α

associated
with the family of solutions �mc0,α(s, t) established in theorem 1.1, that is θc0,α such that

cos(θc0,α) = 1 − 2(A+
1,c0,α

)2. (5.1)

It is pertinent to ask whether θc0,α may attain any value in the interval [0, π ] by varying the
parameter c0 > 0.

In figure 2 we plot the function θc0,α associated with the family of solutions �mc0,α(s, t)

established in theorem 1.1 for α = 0, α = 0.4 and α = 1, as a function of c0 > 0. The curves
θc0,0 and θc0,1 are exact since we have explicit formulae for A+

1,c0,α
when α = 0 and α = 1

(see (1.27) and (1.30)). We deduce that in the case α = 0, there is a bijective relation between
c0 > 0 and the angles in (0, π). In the case α = 1, there are infinite values of c0 > 0 that
allow to reach any angle in [0, π ]. If α ∈ (0, 1), numerical simulations show that there exists
θ∗
α ∈ (0, π) such that the angles in (θ∗

α , π) are reached by a unique value of c0, but for angles
in [0, θ∗

α ] there are at least two values of c0 > 0 that produce them (See θc0,0.4 in figure 2).
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Figure 2. The angles θc0,α as a function of c0 for α = 0, α = 0.4 and α = 1.

These numerical results suggest that, due to the invariance of (LLG) under rotations4, for
a fixed α ∈ [0, 1) one can solve the following inverse problem: given any distinct vectors
�A+, �A− ∈ S

2 there exists c0 > 0 such that the associated solution �mc0,α(s, t) given by
theorem 1.1 (possibly multiplied by a rotation matrix) provides a solution of (LLG) with
initial condition

�m(·, 0) = �A+χ(0,∞)(·) + �A−χ(−∞,0)(·). (5.2)

Note that in the case α = 1 the restriction �A+ 
= �A− can be dropped.
In addition, figure 2 suggests that �A+

c0,α

= �A−

c0,α
for fixed α ∈ [0, 1) and c0 > 0. Indeed,

notice that �A+
c0,α


= �A−
c0,α

if and only if A1 
= ±1 or equivalently cos θc0,α 
= −1, that is
θc0,α 
= π , which is true if α ∈ [0, 1) for any c0 > 0 (See figure 2). Notice also that when
α = 1, then the value π is attained by different values of c0.

The next natural question is the injectivity of the application c0 −→ θc0,α , for fixed
α. Precisely, can we generate the same angle using different values of c0? In the case
α = 0, the plot of θc0,0 in figure 2 shows that the value of c0 is unique, in fact one has

following formula sin (θc0,0/2) = A1,c0,0 = e− c2
0
2 π (see [20]). In the case α = 1, we have

sin (θc0,1/2) = A1,c0,1 = cos(c0
√

π), moreover

�A+
c0,1 = �A+

c0+2k
√

π,1, for any k ∈ Z. (5.3)

As before, if α ∈ (0, 1) we do not have an analytic answer and we have to rely on numerical
simulations. However, it is difficult to test the uniqueness of c0 numerically. Using the
command FindRoot in Mathematica, we have found such values. For instance, for α = 0.4,
we obtain that c0 ≈ 2.1749 and c0 ≈ 6.6263 give the same value of �A+

c0,0.4. The respective
profiles �mc0,0.4(·) are shown in figure 3. This multiplicity of solutions suggests that the Cauchy
problem for (LLG) with initial condition (5.2) is ill-posed, at least for certain values of c0.
This interesting problem will be studied in a forthcoming paper.

The rest of this section is devoted to give some numerical results on the behaviour of the
limiting vector �A+

c0,α
. In particular, the results below aim to complement those established in

theorem 1.3 on the behaviour of �A+
c0,α

for small values of c0, when α is fixed.

4 In fact, using that

(M �a) × (M �b) = (det M)(M−1)T (�a × �b), for all M ∈ M3,3(R), �a, �b ∈ R
3,

it is easy to verify that if �m(s, t) is a solution of (LLG) with initial condition �m0, then �mR := R �m is a solution of
(LLG) with initial condition �m0

R := R �m0, for any R ∈ SO(3).
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(a) (b)

Figure 3. Two profiles �mc0,0.4(·), with the same limit vector �A+
c0,0.4.

We start recalling what is known in the extreme cases α = 0 and α = 1. Precisely, if
α = 0, the explicit formulae (1.27)–(1.29) for �A+

c0,0
allow us to prove that

lim
c0→0+

A+
3,c0,0 = 0 and lim

c0→∞ A+
3,c0,1 = 1, (5.4)

and also that {A+
3,c0,0

: c0 ∈ (0, ∞)} = (0, 1). When α = 1 the picture is completely different.
In fact A+

3,c0,1
= 0 for all c0 > 0, and the limit vectors remain in the equator plane S

1 × {0}.
The natural question is what happens with �A+

c0,α
when α ∈ (0, 1) as a function of c0.

Although we do not provide a rigorous answer to this question, in figure 4 we show some
numerical results. Precisely, figure 4 depicts the curves �A+

c0,0.01, �A+
c0,0.4 and �A+

c0,0.8 as functions

of c0, for c0 ∈ [0, 1000]. We see that the behaviour of �A+
c0,α

changes when α increases in the
sense that the first and second coordinates start oscillating more and more as α goes to 1. In
all the cases the third component remains monotonically increasing with c0, but the value of
A+

3,1000,α seems to be decreasing with α. At this point it is not clear what the limit value of
A+

3,c0,α
as c0 → ∞ is. For this reason, we perform a more detailed analysis of A+

3,c0,α
and

we show the curves A+
3,1,α , A+

3,10,α , A+
3,1000,α (for fixed α ∈ [0, 1]) in figure 5. From these

results we conjecture that {A+
3,c0,·}c0>0 is a pointwise nondecreasing sequence of functions that

converges to 1 for any α < 1 as c0 → ∞. This would imply that, for α ∈ (0, 1) fixed,
A1,c0,α → 0 as c0 → ∞, and since A1,c0,α → 1 as c0 → 0 (see (1.24)), we could conclude by
continuity (see theorem 1.3) that for any angle θ ∈ (0, π) there exists c0 > 0 such that θ is
the angle between �A+

c0,α
and − �A+

c0,α
(see (5.1)). This provides an alternative way to justify the

surjectivity of the map c0 �→ �A+
c0,α

(in the sense explained above).
The curves in figure 5 also allow us to discuss further the results in theorem 1.4. In fact,

when α is close to 1 the slope of the functions become unbounded and, roughly speaking, the
behaviour of A+

3,c0,α
is in agreement with the result in theorem 1.4, that is

A+
3,c0,α

∼ C(c0)
√

1 − α, as α → 1−.

Numerically, the analysis is more difficult when α ∼ 0, because the number of
computations needed to have an accurate profile of A+

3,c0,α
increases drastically as α → 0+.
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(a) (b) (c)

Figure 4. The curves �A+
c0,0.01, �A+

c0,0.4 and �A+
c0,0.8 as functions of c0, for c0 ∈ [0, 1000].

Figure 5. The curves A+
3,1,α ,A+

3,10,α , A+
3,1000,α as functions of α, for α ∈ [0, 1].

In any case, figure 5 suggests that A+
3,c0,α

converges to A+
3,c0,0

faster than
√

α|ln(α)|. We think
that this rate of convergence can be improved to α|ln(α)|. In fact, in the proof of lemma 3.10 we
only used energy estimates. Probably, taking into account the oscillations in equation (3.106)
(as did in proposition 3.3), it would be possible to establish the necessary estimates to prove
the following conjecture:

| �A+
c0,α

− �A+
c0,0| � C(c0)α|ln(α)|, for α ∈ (0, 1/2].
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6. Appendix

In this appendix we show how to compute explicitly the solution �mc0,α(s, t) of the LLG equation
in the case α = 1. As a consequence, we will obtain an explicit formula for the limiting vector
�A+

c0,1
and the other constants appearing in the asymptotics of the associated profile established

in theorem 1.2 in terms of the parameter c0 in the case when α = 1.
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We start by recalling that if α = 1 then β = 0. We need to find the solution { �m, �n, �b}
of the Serret–Frenet system (1.6) with c(s) = c0e−s2/4, τ ≡ 0 and the initial conditions (1.8).
Hence, it is immediate that

m3 = n3 ≡ 0, b1 = b2 ≡ 0 and b3 ≡ 1.

To compute the other components, we use the Riccati equation (3.9) satisfied by the
stereographic projection of {nj , bj , mj } from the south pole

ηj = nj + ibj

1 + mj

, for j ∈ {1, 2}, (6.1)

found in the proof of lemma 3.1. For the values of curvature and torsion c(s) = c0e−s2/4 and
τ(s) = 0 the Riccati equation (3.9) reads

η′
j +

iβs

2
ηj +

c0

2
e−αs2/4(η2

j + 1) = 0. (6.2)

We see that when α = 1, and thus β = 0, (6.2) is a separable equation that we write as

dηj

η2
j + 1

= −c0

2
e−αs2/4,

so integrating, we get

ηj (s) = tan
(

arctan(ηj (0)) − c0

2
Erf(s)

)
, (6.3)

where Erf(s) is the non-normalized error function

Erf(s) =
∫ s

0
e−σ 2/4 dσ.

Also, using (1.8) and (6.1) we get the initial conditions η1(0) = 0 and η2(0) = 1. In particular,
if c0 is small (6.3) is the global solution of the Riccati equation, but it blows-up in finite time
if c0 is large. As long as ηj is well-defined, by lemma 3.1,

fj (s) = e
c0
2

∫ s

0 e−ασ2/4ηj (σ ) dσ .

The change of variables

µ = arctan(ηj (0)) − c0

2
Erf(s)

yields ∫ s

0
e−ασ 2/4ηj (σ ) dσ = 2

c0
ln

∣∣∣∣∣cos
(
arctan(ηj (0)) − c0

2 Erf(s)
)

cos(arctan(ηj (0)))

∣∣∣∣∣ ,
and after some simplifications, we obtain

f1(s) =
∣∣∣cos

(c0

2
Erf(s)

)∣∣∣ and f2(s) =
∣∣∣cos

(c0

2
Erf(s)

)
+ sin

(c0

2
Erf(s)

)∣∣∣ .
In view of (3.18) and (3.19), we conclude that

m1(s) = 2|f1(s)|2 − 1 = cos (c0 Erf(s)) and m2(s) = |f2(s)|2 − 1 = sin (c0 Erf(s)) .

(6.4)

A priori, the formulae in (6.4) are valid only as long as η is well-defined, but a simple verification
show that these are the global solutions of (1.6), with

n1(s) = − sin (c0 Erf(s)) and n2(s) = cos (c0 Erf(s)) .
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In conclusion, we have proved the following:

Proposition 6.1. Let α = 1, and thus β = 0. Then, the trihedron { �mc0,1, �nc0,1,
�bc0,1} solution

of (1.6)–(1.8) is given by

�mc0,1(s) = (cos(c0 Erf(s)), sin(c0 Erf(s)), 0),

�nc0,1(s) = −(sin(c0 Erf(s)), cos(c0 Erf(s)), 0),

�bc0,1(s) = (0, 0, 1),

for all s ∈ R. In particular, the limiting vectors �A+
c0,1

and �A−
c0,1

in theorem 1.2 are given in
terms of c0 as follows:

�A±
c0,1

= (cos(c0
√

π), ± sin(c0
√

π), 0).

Proposition 6.1 allows us to give an alternative explicit proof of theorem 1.2 when α = 1.

Corollary 6.2. [Explicit asymptotics whenα = 1] With the same notation as in proposition 6.1,
the following asymptotics for { �mc0,1, �nc0,1,

�bc0,1} holds true:

�mc0,1(s) = �A+
c0,1 − 2c0

s
�B+
c0,1e−s2/4 sin(�a) − 2c2

0

s2
�A+

c0,1e−s2/2 + O

(
e−s2/4

s3

)
,

�nc0,1(s) = �B+
c0,1 sin(�a) +

2c0

s
�A+

c0,1e−s2/4 − 2c2
0

s2
�B+
c0,1e−s2/2 sin(�a) + O

(
e−s2/4

s3

)
,

�bc0,1(s) = �B+
c0,1 cos(�a),

where the vectors �A+
c0,1

, �B+
c0,1

and �a = (aj )
3
j=1 are given explicitly in terms of c0 by

�A+
c0,1 = (cos(c0

√
π), sin(c0

√
π), 0), �B+

c0,1 = (|sin(c0
√

π)|, |cos(c0
√

π)|, 1),

a1 =
{ 3π

2 , if sin(c0
√

π) � 0,
π
2 , if sin(c0

√
π) < 0,

a2 =
{

π
2 , if cos(c0

√
π) � 0,

3π
2 , if cos(c0

√
π) < 0,

and a3 = 0.

Here, the bounds controlling the error terms depend on c0.

Proof. By proposition 6.1,


�mc0,1(s) = (cos(c0
√

π − c0 Erfc(s)), sin(c0
√

π − c0 Erfc(s)), 0),

�nc0,1(s) = −(sin(c0
√

π − c0 Erfc(s)), cos(c0
√

π − c0 Erfc(s)), 0),

�bc0,1(s) = (0, 0, 1),

(6.5)

where the complementary error function is given by

Erfc(s) =
∫ ∞

s

e−σ 2/4 dσ = √
π − Erf(s).

It is simple to check that

sin(c0 Erfc(s)) = e−s2/4

(
2c0

s
− 4c0

s3
+

24c0

s5
+ O

(c0

s7

))
,

cos(c0 Erfc(s)) = 1 + e−s2/2

(
−2c2

0

s2
+

8c2
0

s4
− 56c2

0

s6
+ O

(
c2

0

s8

))
,
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so that, using (6.5), we obtain that

m1(s) = n2(s)= cos(c0
√

π) +
2c0

s
e−s2/4 sin(c0

√
π) − 2c2

0

s2
e−s2/2 cos(c0

√
π) + O

(
e−s2/4

s3

)
,

m2(s)= −n1(s)= sin(c0
√

π)− 2c0

s
e−s2/4 cos(c0

√
π) − 2c2

0

s2
e−s2/2 sin(c0

√
π) + O

(
e−s2/4

s3

)
.

The conclusion follows from the definitions of �A+
c0,1

, �B+
c0,1

and �a. �

Remark 6.3. Notice that �a is not a continuous function of c0, but the vectors (B+
j sin(aj ))

3
j=1

and (B+
j cos(aj ))

3
j=1 are.
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[8] Brezis H 1973 Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert

(North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)) (Amsterdam: North-Holland)
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Non Linéaire 28 743–73

[16] Gilbert T L 1955 A Lagrangian formulation of the gyromagnetic equation of the magnetization field Phys. Rev.
100 1243

[17] Grünrock A 2005 Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS
and DNLS Int. Math. Res. Not. 41 2525–58

[18] Guan M, Gustafson S, Kang K and Tsai T-P 2008 Global questions for map evolution equations Singularities
in PDE and the Calculus of Variations (CRM Proc. Lecture Notes vol 44) (Providence, RI: American
Mathematical Society) pp 61–74

1349

http://dx.doi.org/10.1016/j.anihpc.2007.03.007
http://dx.doi.org/10.1007/s00220-008-0682-3
http://dx.doi.org/10.4171/JEMS/300
http://dx.doi.org/10.1007/s00205-013-0660-6
http://dx.doi.org/10.1088/0951-7715/24/8/005
http://arxiv.org/abs/1404.7381
http://dx.doi.org/10.1016/0021-9991(88)90145-3
http://dx.doi.org/10.1103/PhysRevB.24.6751
http://dx.doi.org/10.1016/0378-4371(83)90271-6
http://dx.doi.org/10.1137/080741720
http://dx.doi.org/10.1016/j.anihpc.2011.06.004
http://dx.doi.org/10.1155/IMRN.2005.2525


Nonlinearity 28 (2015) 1307 S Gutiérrez and A de Laire

[19] Guo B and Ding S 2008 Landau–Lifshitz Equations (Frontiers of Research with the Chinese Academy of Sciences
vol 1) (Hackensack, NJ: World Scientific)

[20] Gutiérrez S, Rivas J and Vega L 2003 Formation of singularities and self-similar vortex motion under the localized
induction approximation Commun. Partial Differ. Eqn. 28 927–68

[21] Gutiérrez S and Vega L 2004 Self-similar solutions of the localized induction approximation: singularity
formation Nonlinearity 17 2091–136

[22] Hartman P 1964 Ordinary Differential Equations (New York: Wiley)
[23] Hasimoto H 1972 A soliton on a vortex filament J. Fluid Mech. 51 477–85
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