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Global well-posedness for a nonlo
al Gross-Pitaevskiiequation with non-zero 
ondition at in�nityAndré de LaireUPMC Univ Paris 06, UMR 7598Laboratoire Ja
ques-Louis Lions, F-75005, Paris, Fran
edelaire�ann.jussieu.frAbstra
tWe study the Gross-Pitaevskii equation involving a nonlo
al intera
tion potential. Our aim isto give su�
ient 
onditions that 
over a variety of nonlo
al intera
tions su
h that the asso
iatedCau
hy problem is globally well-posed with non-zero boundary 
ondition at in�nity, in any di-mension. We fo
us on even potentials that are positive de�nite or positive tempered distributions.Keywords Nonlo
al S
hrödinger equation; Gross-Pitaevskii equation; Global well-posedness;Initial value problem.Mathemati
s Subje
t Classi�
ation 35Q55; 35A05; 37K05; 35Q40; 81Q99.1 Introdu
tion1.1 The problemIn order to des
ribe the kineti
 of a weakly intera
ting Bose gas of bosons of mass m, Gross [22℄and Pitaevskii [33℄ derived in the Hartree approximation, that the wavefun
tion Ψ governing the
ondensate satis�es
i~∂tΨ(x, t) = − ~2

2m
∆Ψ(x, t) + Ψ(x, t)

∫

RN

|Ψ(y, t)|2V (x − y) dy, on R
N × R, (1)where N is the spa
e dimension and V des
ribes the intera
tion between bosons. In the mosttypi
al �rst approximation, V is 
onsidered as a Dira
 delta fun
tion, whi
h leads to the standardlo
al Gross-Pitaevskii equation. This lo
al model with non-vanishing 
ondition at in�nity has beenintensively used, due to its appli
ation in various areas of physi
s, su
h as super�uidity, nonlinearopti
s and Bose-Einstein 
ondensation [26, 25, 28, 11℄. It seems then natural to analyze the equation(1) for more general intera
tions. Indeed, in the study of super�uidity, supersolids and Bose-Einstein
ondensation, di�erent types of nonlo
al potentials have been proposed [4, 13, 36, 34, 27, 1, 38, 12, 9℄.To obtain a dimensionless equation, we take the average energy level per unit mass E0 of a boson,and we set

ψ(x, t) = exp

(
imE0t

~

)
Ψ(x, t).Then (1) turns into

i~∂tψ(x, t) = − ~2

2m
∆ψ(x, t) −mE0ψ(x, t) + ψ(x, t)

∫

RN

|ψ(y, t)|2V (x− y) dy. (2)1



De�ning the res
aling
u(x, t) =

1

λ
√
mE0

(
~√

2m2E0

)N
2

ψ

(
~x√
2m2E0

,
~t

mE0

)
,from (2) we dedu
e that

i∂tu(x, t) + ∆u(x, t) + u(x, t)

(
1− λ2

∫

RN

|u(y, t)|2V(x− y) dy

)
= 0,with

V(x) = V

(
~x√
2m2E0

)
.If we assume that the 
onvolution between V and a 
onstant is well-de�ned and equal to a positive
onstant, 
hoosing λ2 = (V ∗ 1)−1, equation (2) is equivalent to

i∂tu+∆u+ λ2u(V ∗ (1 − |u|2)) = 0 on R
N × R. (3)More generally, we 
onsider the Cau
hy problem for the nonlo
al Gross-Pitaevskii equation withnon-zero initial 
ondition at in�nity in the form

{
i∂tu+∆u+ u(W ∗ (1− |u|2)) = 0 on R

N × R,

u(0) = u0,
(NGP)where

|u0(x)| → 1, as |x| → ∞. (4)If W is a real-valued even distribution, (NGP) is a Hamiltonian equation whose energy given by
E(u(t)) =

1

2

∫

RN

|∇u(t)|2 dx+
1

4

∫

RN

(W ∗ (1 − |u(t)|2))(1 − |u(t)|2) dxis formally 
onserved.In the 
ase that W is the Dira
 delta fun
tion, (NGP) 
orresponds to the lo
al Gross-Pitaevskiiequation and the Cau
hy problem in this instan
e has been studied by Béthuel and Saut [8℄, Gérard[19℄, Gallo [17℄, among others. As mentioned before, in a more general framework the intera
tionkernel W 
ould be nonlo
al. For example, Sh
hesnovi
h and Kraenkel in [36℄ 
onsider for ε > 0,
Wε(x) =





1

2πε2|x|K0

( |x|
ε

)
, N = 2,

1

4πε2|x| exp
(
−|x|
ε

)
, N = 3,

(5)where K0 is the modi�ed Bessel fun
tion of se
ond kind (also 
alled Ma
donald fun
tion). In thisway Wε might be 
onsidered as an approximation of the Dira
 delta fun
tion, sin
e Wε → δ, as
ε→ 0, in a distributional sense. Others interesting nonlo
al intera
tions are the soft 
ore potential

W (x) =

{
1, if |x| < a,

0, otherwise, (6)with a > 0, whi
h is used in [27, 1℄ to the study of supersolids, and also
W = α1δ + α2K, α1, α2 ∈ R, (7)where K is the singular kernel

K(x) =
x21 + x22 − 2x23

|x|5 , x ∈ R
3\{0}. (8)The potential (7)-(8) models dipolar for
es in a quantum gas (see [9℄, [38℄).2



1.2 Main resultsIn order to in
lude intera
tions su
h as (7)-(8), it is appropriate to work in the spa
e Mp,q(R
N ),that is the set of tempered distributions W su
h that the linear operator f 7→ W ∗ f is boundedfrom Lp(RN ) to Lq(RN ). We denote by ‖W‖p,q its norm. We will suppose that there exist

p1, p2, p3, p4, q1, q2, q3, q4, s1, s2 ∈ [1,∞),with
N

N − 2
> p4,

2N

N − 2
> p2, p3, s1, s2 ≥ 2, 2 ≥ q1 >

2N

N + 2
, q3, q4 >

N

2
if N ≥ 3and

p2, p3, s1, s2 ≥ 2, 2 ≥ q1 > 1 if 2 ≥ N ≥ 1,su
h that 



W ∈ M2,2(R
N ) ∩

4⋂

i=1

Mpi,qi(R
N ),

1

p3
+

1

q2
=

1

q1
,

1

p1
− 1

p3
=

1

s1
,

1

q1
− 1

q3
=

1

s2
if N ≥ 3.

(WN )We re
all that if p > q, then Mp,q = {0}. Therefore if we suppose that W is not zero, the numbersabove have to satisfy q2, q3 ≥ 2. In addition, the existen
e of s1, s2 and the relations in (WN ) implythat
N

N − 2
> p1, q2 >

N

2
,

1

p1
− 1

p3
∈
(
N − 2

2N
,
1

2

]
,

1

q1
− 1

q3
∈
(
N − 2

2N
,
1

2

] if N ≥ 3.Figure 1 s
hemati
ally shows the lo
ation of these numbers in the unit square.

Figure 1: For N > 4, the pi
ture on the left represents the (1/p, 1/q)-plane, in the sense that
(1/p1, 1/q1) ∈ R1, (1/p2, 1/q2), (1/p3, 1/q3) ∈ R2, (1/p4, 1/q4) ∈ R3. In the pi
ture on the right, theshaded areas symbolize that (1/q1, 1/q3) ∈ R4 and (1/p1, 1/p3) ∈ R5, for N > 6.To 
he
k the hypothesis (WN ) it is 
onvenient to use some properties of the spa
es Mp,q(R

N ).For instan
e, for any 1 < p ≤ q <∞, Mp,q(R
N ) = Mq′,p′(RN ) and for any 1 ≤ p ≤ 2, M1,1(R

N ) ⊆
Mp,p(R

N ) ⊆ M2,2(R
N ) ([20℄). In Proposition 1.3 we give more expli
it 
onditions to ensure (WN ).3



As remarked before, the energy is formally 
onserved if W is a real-valued even distribution. Were
all that a real-valued distribution is said to be even if
〈W,φ〉 = 〈W, φ̃〉, ∀φ ∈ C∞

0 (RN ;R),where φ̃(x) = φ(−x). However, the 
onservation of energy is not su�
ient to study the long timebehavior of the Cau
hy problem, be
ause the potential energy is not ne
essarily nonnegative andthe nonlo
al nature of the problem prevents us to obtain pointwise bounds. We are able to 
ontrolthis term assuming further that W is a positive distribution or supposing that it is a positive de�nitedistribution. More pre
isely, we say that W is a positive distribution if
〈W,φ〉 ≥ 0, ∀φ ≥ 0, φ ∈ C∞

0 (RN ;R),and that it is a positive de�nite distribution if
〈W,φ ∗ φ̃〉 ≥ 0, φ ∈ C∞

0 (RN ;R). (9)These type of distributions frequently arise in the physi
al models (see Subse
tion 1.3). In parti
-ular, the real-valued even positive de�nite distributions in
lude a large variety of models where theintera
tion between parti
les is symmetri
. In Se
tion 2 we state further properties of this kind ofpotentials.As Gallo in [17℄, we 
onsider the initial data u0 for the problem (NGP) belonging to the spa
e
φ+H1(RN ), with φ a fun
tion of �nite energy. More pre
isely, from now on we assume that φ is a
omplex-valued fun
tion that satis�es

φ ∈ W 1,∞(RN ), ∇φ ∈ H2(RN ) ∩ C(Bc), |φ|2 − 1 ∈ L2(RN ), (10)where Bc denotes the 
omplement of some ball B ⊆ RN , so that in parti
ular φ satis�es (4).Remark 1.1. We do not suppose that φ has a limit at in�nity. In dimensions N = 1, 2 a fun
tionsatisfying (10) 
ould have 
ompli
ated os
illations, su
h as (see [19, 18℄)
φ(x) = exp(i(ln(2 + |x|)) 1

4 ), x ∈ R
2.We note that any fun
tion verifying (10) belongs to the Homogeneous Sobolev spa
e

Ḣ1(RN ) = {ψ ∈ L2
loc(R

N ) : ∇ψ ∈ L2(RN )}.In parti
ular, if N ≥ 3 there exists z0 ∈ C with |z0| = 1 su
h that φ − z0 ∈ L
2N

N−2 (RN ) (see e.g.Theorem 4.5.9 in [24℄). Choosing α ∈ R su
h that z0 = eiα and sin
e the equation (NGP) is invariantby a phase 
hange, one 
an assume that φ− 1 ∈ L
2N

N−2 (RN ), but we do not use expli
itly this de
ayin order to handle at the same time the two-dimensional 
ase.Our main result 
on
erning the global well-posedness for the Cau
hy problem is the following.Theorem 1.2. Let W be a real-valued even distribution satisfying (WN ).
(i) Assume that one of the following is veri�ed

(a) N ≥ 2 and W is a positive de�nite distribution.
(b) N ≥ 1, W ∈ M1,1(R

N ) and W is a positive distribution.Then the Cau
hy problem (NGP) is globally well-posed in φ + H1(RN ). More pre
isely, forevery w0 ∈ H1(RN ) there exists a unique w ∈ C(R, H1(RN )), for whi
h φ + w solves (NGP)with the initial 
ondition u0 = φ + w0 and for any bounded 
losed interval I ⊂ R, the �owmap w0 ∈ H1(RN ) 7→ w ∈ C(I,H1(RN )) is 
ontinuous. Furthermore, w ∈ C1(R, H−1(RN ))and the energy is 
onserved
E0 := E(φ+ w0) = E(φ+ w(t)), ∀t ∈ R. (11)4



(ii) Assume that there exists σ > 0 su
h that
ess inf Ŵ ≥ σ. (12)Then (NGP) is globally well-posed in φ+H1(RN ), for all N ≥ 1 and (11) holds. Moreover, if

u is the solution asso
iated to the initial data u0 ∈ φ+H1(RN ), we have the growth estimate
‖u(t)− φ‖L2 ≤ C|t|+ ‖u0 − φ‖L2 , (13)for any t ∈ R, where C is a positive 
onstant that depends only on E0, W, φ and σ.We make now some remarks about Theorem 1.2.

• The 
ondition (WN ) implies that W ∈ M2,2(R
N ), so that Ŵ ∈ L∞(RN ) and therefore the
ondition (12) makes sense.

• In 
ontrast with (13), as we prove in Se
tion 5, the growth estimate for the solution given byTheorem 1.2-(i) is only exponential
‖u(t)− φ‖L2 ≤ C1e

C2|t|(1 + ‖u0 − φ‖L2), t ∈ R,for some 
onstants C1, C2 only depending on E0, W and φ.
• A

ordingly to Remark 1.1 and the Sobolev embedding theorem, after a phase 
hange indepen-dent of t, the solution u of (NGP) given by Theorem 1.2 also satis�es that u− 1 ∈ L

2N
N−2 (RN )if N ≥ 3.

• In dimensions 1 ≤ N ≤ 3 we 
an 
hoose (p4, q4) = (2, 2) in (WN ). Consequently, the 
onditionthat W ∈ Mp4,q4(R
N ) is nontrivial only when N ≥ 4.At �rst sight, it is not obvious to 
he
k the hypotheses on W . The purpose of the next result isto give su�
ient 
onditions to ensure (WN ).Proposition 1.3.

(i) Let 1 ≤ N ≤ 3. If W ∈ M2,2(R
N ) ∩ M3,3(R

N ), then W ful�ls (WN ). Furthermore, if Wveri�es (WN ) with pi = qi, 1 ≤ i ≤ 3, then W ∈ M2,2(R
N ) ∩M3,3(R

N ).
(ii) Let N ≥ 4. Assume that W ∈ Mr,r(R

N ) for every 1 < r <∞. Also suppose that there exists
r̄ > N

4 su
h that W ∈ Mp,q(R
N ), for every 1 − 1

r̄ < 1
p < 1 with 1

q = 1
p + 1

r̄ − 1. Then Wsatis�es (WN ).We 
on
lude from Proposition 1.3 that the Dira
 delta fun
tion veri�es (WN ) in dimensions
1 ≤ N ≤ 3. Sin
e δ̂ = 1, Theorem 1.2-(ii) re
overs the results of global existen
e for the lo
alGross-Pitaevskii equation in [8, 19, 17℄ and the growth estimate proved in [2℄. In addition, if thepotential 
onverges to the Dira
 delta fun
tion, the 
orrespondent solutions 
onverge to the solutionof the lo
al problem as a 
onsequen
e of the following result.Proposition 1.4. Assume that 1 ≤ N ≤ 3. Let (Wn)n∈N be a sequen
e of real-valued distributionsin M2,2(R

N ) ∩M3,3(R
N ) su
h that un is the global solution of (NGP) given by Theorem 1.2, with

Wn instead of W, for some initial data in φ+H1(RN ), and
lim
n→∞

Wn =W∞, in M2,2(R
N ) ∩M3,3(R

N ), (14)with ‖W∞‖M2,2∩M3,3 > 0 (‖·‖M2,2∩M3,3 := max{‖·‖M2,2, ‖·‖M3,3}). Then un → u in C(I,H1(RN )),for any bounded 
losed interval I ⊂ R, where u is the solution of (NGP) with W = W∞ and thesame initial data. 5



On the other hand, the Dira
 delta fun
tion does not satisfy (WN ) if N ≥ 4 and thereforeTheorem 1.2 
annot be applied. In fa
t, to our knowledge there is no proof for the global well-posedness to the lo
al Gross-Pitaevskii equation in dimension N ≥ 4 with arbitrary initial 
ondition.For small initial data, Gustafson et al. [23℄ proved global well-posedness in dimensions N ≥ 4 aswell as Gérard [19℄ in the four-dimensional energy spa
e.As a 
onsequen
e of Theorem 1.2 and Proposition 1.3 we derive the next result for integrablekernels.Corollary 1.5. Let W be a real-valued even fun
tion su
h that W ∈ L1(RN ) if 1 ≤ N ≤ 3 and
W ∈ L1(RN ) ∩ Lr(RN ), for some r > N

4 , if N ≥ 4. Assume also that W is positive de�niteif N ≥ 2, or that it is nonnegative. Then the Cau
hy problem (NGP) is globally well-posed in
φ+H1(RN ).As Gallo remarks in [17℄, the well-posedness in a spa
e su
h as φ +H1(RN ) makes possible tohandle the problem with initial data in the energy spa
e

E(RN ) = {u ∈ H1lo
(RN ) : ∇u ∈ L2(RN ), 1− |u|2 ∈ L2(RN )},equipped with the distan
e
d(u, v) = ‖u− v‖X1+H1 + ‖|u|2 − |v|2‖L2. (15)Here X1(RN ) denotes the Zhidkov spa
e
X1(RN ) = {u ∈ L∞(RN ) : ∇u ∈ L2(RN )}.We re
all that u ∈ C(R, E(RN )) is 
alled a mild solution of (NGP) if it satis�es the Duhamel formula

u(t) = eit∆u0 + i

∫ t

0

ei(t−s)∆(u(s)(W ∗ (1− |u(s)|2)) ds, t ∈ R.We note that by Lemma 6.3 the integral in the r.h.s is a
tually �nite (see [19, 18℄ for further resultsabout the a
tion of S
hrödinger semigroup on E(RN )). With the same arguments of [17℄, we mayalso handle the problem with initial data in the energy spa
e. Moreover, in the 
ase 1 ≤ N ≤ 4,we prove that a solution in the energy spa
e with initial 
ondition u0 ∈ E(RN ), ne
essarily belongsto u0 +H1(RN ), whi
h is a proper subset of E(RN ). This also gives the uniqueness in the energyspa
e for 1 ≤ N ≤ 4, as follows.Theorem 1.6. Let W be as in Theorem 1.2. Then for any u0 ∈ E(RN ), there exists a unique
w ∈ C(R, H1(RN )) su
h that u := u0 + w solves (NGP). Furthermore, if 1 ≤ N ≤ 4 and v ∈
C(R, E(RN )) is a mild solution of (NGP) with v(0) = u0, then v = u.The next proposition shows that the hypotheses made on the potential W also ensure the H2-regularity of the solutions.Proposition 1.7. Let W be as in Theorem 1.2 and u be the global solution of (NGP) for someinitial data u0 ∈ φ+H2(RN ). Then u− φ ∈ C(R, H2(RN )) ∩ C1(R, L2(RN )).Finally, we study the 
onservation of momentum and mass for (NGP). As has been dis
ussed inseveral works (see [5, 7, 32, 6℄) the 
lassi
al 
on
epts of momentum and mass, that is

p(u) =

∫

RN

〈〈i∇u, u〉〉 dx and M(u) =

∫

RN

(1− |u|2) dx,with 〈〈z1, z2〉〉 = Re(z1z2), are not well-de�ned for u ∈ φ+H1(RN ). Thus it is ne
essary to give somegeneralized sense to these quantities. In Se
tion 7 we will explain in detail a notion of generalizedmomentum and generalized mass su
h that we have the next results on 
onservation laws.6



Theorem 1.8. Let N ≥ 1 and u0 ∈ φ+H1(RN ). Then the generalized momentum is 
onserved bythe �ow of the asso
iated solution u of (NGP) given by Theorem 1.2.Theorem 1.9. Let 1 ≤ N ≤ 4. In addition to (10), assume that ∇φ ∈ L
N

N−1 (RN ) if N = 3, 4.Suppose that u0 ∈ φ + H1(RN ) has �nite generalized mass. Then the generalized mass of theasso
iated solution of (NGP) given by Theorem 1.2 is 
onserved by the �ow.1.3 Examples(i) Given the spheri
ally symmetri
 intera
tion of bosons, it is usual to suppose that W is radial,that isW (x−y) = R(|x−y|), with R : [0,∞) → R. Using the fa
t that the Fourier transform ofa radial fun
tion is also radial, we may write Ŵ (ξ) = ρ(|ξ|), for some fun
tion ρ : [0,∞) → R.Noti
ing that δ̂ = 1, a next order of approximation would be to 
onsider (see e.g. [36℄)
ρ(r) =

1

1 + ε2r2
, ε > 0.Then the Fourier inversion theorem implies that W is given by (5) for N = 2, 3. By Proposi-tion 2.2, (5) is indeed a positive de�nite fun
tion, sin
e ρ is nonnegative. For this potential wealso have that K0(x) ≈ ln

(
2
x

) as x → 0, and K0(x) ≈
√

π
2x exp(−x) as x → ∞ (see e.g. [31℄,p. 136), hen
e W ∈ L1(RN ) for N = 2, 3. Therefore it is possible to invoke Corollary 1.5.(ii) By Lemma 2.3, the fun
tion given by (6) 
annot be positive de�nite, sin
e it is bounded andit does not 
oin
ide with any 
ontinuous fun
tion a.e. However, W is a nonnegative fun
tionthat belongs to L1(RN )∩L∞(RN ). Therefore Corollary 1.5 
an be applied in any dimension.(iii) We re
all that if Ω is an even fun
tion, smooth away from the origin, homogeneous of degreezero, with zero mean-value on the sphere

∫

SN−1

Ω(σ) dσ = 0,then
K(x) =

Ω(x)

|x|N , x ∈ R
N\{0},de�nes a tempered distribution K in the sense of prin
ipal value, that 
oin
ides with K awayfrom the origin. Moreover, for any f ∈ S(RN ), x ∈ RN ,

(K ∗ f)(x) = p.v. ∫
RN

K(y)f(x− y) dy = lim
ε→0

∫

1

ε>|y|>ε

Ω(y)

|y|N f(x− y) dy, (16)
K ∈ Mp,p(R

N ) for every 1 < p <∞, and the Fourier transform of K belongs to L∞(RN ) (
f.[37℄). Therefore
W = α1δ + α2K (17)is a positive de�nite distribution if α1 is large enough and then Theorem 1.2-(ii) gives a globalsolution of (NGP) in any dimension. For instan
e, we may 
onsider in dimension three thefun
tion K given by (8). Sin
e (see [9℄)

K̂(ξ) =
4π

3

(
3ξ23
|ξ|2 − 1

)
, ξ ∈ R

3\{0},(17) is positive de�nite by Proposition 2.2 if
α1 ≥ 4π

3
α2 ≥ 0 or α1 ≥ −8π

3
α2 ≥ 0. (18)Therefore, if (18) is veri�ed we may apply Theorem 1.2-(i)-(a). Moreover, if the inequalitiesin (18) are stri
t, we have also the growth estimate of Theorem 1.2-(ii).7



(iv) Let us re
all that to pass from the original equation (1) to (3) (and hen
e to (NGP)) we onlyneed the 
onstant V ∗ 1 be positive. If we take V as the potential given in the examples (i) or(ii), then V ∈ L1(RN ) and
V ∗ 1 =

∫

RN

V (x) dx > 0.Therefore Theorem 1.2 also provides the global well-posedness for the equation (1). If we wantto 
onsider V as in the example (iii), the meaning of K ∗ 1 is not obvious. However, (16) stillmakes sense if f ≡ 1. In fa
t, using (16),
(K ∗ 1)(x) = lim

ε→0

∫ ε−1

ε

∫

S2

Ω(σ)

r3
r2 dσ dr = 0.Then if V is given by (17), V ∗ 1 = α1 and we have the same 
on
lusion as before, providedthat α1 > 0.One of the �rst works that introdu
es the nonlo
al intera
tion in the Gross-Pitaevskii equationwas made by Pomeau and Ri
a in [34℄ 
onsidering the potential (6). Their main purpose was toestablish a model for super�uids with rotons. In fa
t, the Landau theory of super�uidity of HeliumII says that the dispersion 
urve must exhibit a roton minimum (see [30, 16℄) as was 
orroboratedlater by experimental observations ([14℄). Although the model 
onsidered in [34℄ has a good �t withthe roton minimum, it does not provide a 
orre
t sound speed. For this reason Berlo� in [3℄ proposesthe potential

W (x) = (α+ βA2|x|2 + γA4|x|4) exp(−A2|x|2), x ∈ R
3, (19)where the parameters A, α, β and γ are 
hosen su
h that the above requirements are satis�ed.However, the existen
e of this roton minimum implies that Ŵ must be negative in some interval.In addition, a numeri
al simulation in [3℄ shows that in this 
ase the solution exhibits nonphysi
almass 
on
entration phenomenon, for 
ertain initial 
onditions in φ +H1(R3). At some point, ourresults are in agreement with these observations in the sense that Theorem 1.2 
annot be appliedto the potential (19), be
ause Ŵ and W are negative in some interval. However, by Proposition 1.3we may use the following lo
al well-posedness resultTheorem 1.10. Let W be a distribution satisfying (WN ). Then the Cau
hy problem (NGP) islo
ally well-posed in φ + H1(RN ). More pre
isely, for every w0 ∈ H1(RN ) there exists T > 0su
h that there is a unique w ∈ C([−T, T ], H1(RN )), for whi
h φ + w solves (NGP) with theinitial 
ondition u0 = φ + w0. In addition, w is de�ned on a maximal time interval (−Tmin, Tmax)where w ∈ C1((−Tmin, Tmax), H

−1(RN )) and the blow-up alternative holds: ‖w(t)‖H1(RN ) → ∞, as
t → Tmax if Tmax < ∞ and ‖w(t)‖H1(RN ) → ∞, as t → Tmin if Tmin < ∞. Furthermore, supposingthat W is a real-valued even distribution, for any bounded 
losed interval I ⊂ (−Tmin, Tmax) the�ow map w0 ∈ H1(RN ) 7→ w ∈ C(I,H1(RN )) is 
ontinuous and the energy and the generalizedmomentum are 
onserved on (−Tmin, Tmax).It is an open question to establish whi
h are the exa
t impli
ations of 
hange of sign of theFourier transform of the potential for the global existen
e of the solutions of (NGP). As proposedin [4℄, a way to handle this problem would be to add a higher-order nonlinear term in (1) to avoidthe mass 
on
entration phenomenon, maintaining the 
orre
t phonon-roton dispersion 
urve.This paper is organized as follows. In the next se
tion we give several results about positivede�nite and positive distributions. In Se
tion 3 we establish some 
onvolution inequalities thatinvolve the hypothesis (WN ) and we give the proof of Corollary 1.5. We prove the lo
al well-posedness in Se
tion 4 and also Propositions 1.4 and 1.7. Theorem 1.2 is 
ompleted in Se
tion 5.In Se
tion 6 we brie�y re
all the arguments that lead to Theorem 1.6 and in Se
tion 7 we study the
onservation of momentum and mass. 8



2 Positive de�nite and positive distributionsThe purpose of this se
tion is to re
all some 
lassi
al results for positive de�nite and positivedistributions, in the 
ontext of Theorem 1.2. We also state some properties that we do not use in thenext se
tions, but are useful to better understand the type of potentials 
onsidered in Theorem 1.2.L. S
hwartz in [35℄ de�nes that a (
omplex-valued) distribution T is positive de�nite if
〈T, φ ∗ φ̆〉 ≥ 0, ∀φ ∈ C∞

0 (RN ;C), (20)with φ̆(x) = φ(−x). In virtue of our hypothesis on W, we have preferred to adopt the simplerde�nition (9). The relation between these two possible de�nitions is given in the following lemma.Lemma 2.1. Let T be a real-valued distribution.
(i) If T is positive de�nite (in the sense of (9)) and even, then T ful�ls (20).
(ii) If T veri�es (20), then T is even.In parti
ular, an even real-valued distribution is positive de�nite (in the sense of (9)) if and only ifit satis�es (20).Proof. Suppose that T is positive de�nite in the sense of (9). Let φ ∈ C∞

0 (RN ;C), with φ = φ1+iφ2,
φ1, φ2 ∈ C∞

0 (RN ;R). Then
〈T, φ ∗ φ̆〉 = 〈T, φ1 ∗ φ̃1〉+ 〈T, φ̃2 ∗ φ2〉+ i〈T, φ̃1 ∗ φ2〉 − i〈T, φ1 ∗ φ̃2〉. (21)Sin
e W is even,

〈T, φ̃1 ∗ φ2〉 = 〈T, φ1 ∗ φ̃2〉.Therefore the imaginary part in the r.h.s. of (21) is zero. The real part is positive be
ause T ispositive de�nite, whi
h implies that T veri�es (20).For the proof of (ii), see [35℄.The next result 
hara
terizes the positive de�nite distributions under the hypotheses of Theo-rem 1.2. In parti
ular, it gives a simple way to 
he
k the positive de�niteness in terms of the Fouriertransform.Proposition 2.2. Let W ∈ M2,2(R
N ) be an even real-valued distribution. The following assertionsare equivalent

(i) W is a positive de�nite distribution.
(ii) Ŵ ∈ L∞(RN ) and Ŵ (ξ) ≥ 0 for almost every ξ ∈ RN .
(iii) For every f ∈ L2(RN ;R), ∫

RN

(W ∗ f)(x)f(x) dx ≥ 0.Proof. (i) ⇒ (ii). By Lemma 2.1, we may apply the so-
alled S
hwartz-Bo
hner Theorem (see [35℄,p. 276). Then there exists a positive measure µ ∈ S′(RN ) su
h that Ŵ = µ. Sin
e W ∈ M2,2(R
N ),we have that Ŵ ∈ L∞(RN ), and therefore Ŵ is a nonnegative bounded fun
tion.9



(ii) ⇒ (iii). Sin
e W ∈ M2,2(R
N ), W ∗ f ∈ L2(RN ). From the fa
t that S(RN ) is dense in L2(RN ),we also have that

Ŵ ∗ f = Ŵ f̂ .Using that f is real-valued, by Parseval's theorem we �nally dedu
e
∫

RN

(W ∗ f)(x)f(x) dx = (2π)−N

∫

RN

Ŵ (ξ)|f̂(ξ)|2 dξ ≥ 0,where we have used that Ŵ ≥ 0 for the last inequality.(iii) ⇒ (i). This impli
ation dire
tly follows from the fa
t that C∞
0 (RN ;R) ⊂ L2(RN ;R).We remark that a positive de�nite distribution is not ne
essarily a positive distribution. Forinstan
e, we 
onsider the Laguerre-Gaussian fun
tions

Wm(x) = e−|x|2
m∑

k=0

(−1)k

k!

(
m+ N

2

m− k

)
|x|2k, x ∈ R

N , m ∈ N. (22)These fun
tions are negative in some subset of RN and sin
e Ŵm ≥ 0 (see e.g. [15℄, p. 38), Proposi-tion 2.2 shows that they are positive de�nite fun
tions. We also have thatWm ∈ L1(RN )∩L∞(RN ).Then Corollary 1.5 gives global existen
e of (NGP) for the potential (22) in any dimension N ≥ 2.In the 
ase that the 
onsidered distribution is a
tually a bounded fun
tion, its positive de�nitenessgives some regularity. In other dire
tion, the 
on
ept of positive de�niteness may be related to thesame 
on
ept used for matri
es. We re
all some of these results in the next lemma.Lemma 2.3. Let W be an even real-valued positive de�nite distribution.
(i) If W ∈ L∞(RN ), then it 
oin
ides almost everywhere with a 
ontinuous fun
tion.
(ii) If W is 
ontinuous, then W (0) = ‖W‖L∞(RN ) and for all x1, . . . , xm ∈ RN , m ≥ 1, the matrixgiven by Ajk =W (xj − xk), j, k ∈ {1, . . . ,m}, is a positive semi-de�nite matrix.Proof. Taking into 
onsideration Lemma 2.1, these statements are proved in [35℄.The importan
e of the 
ondition (12) is that it gives the following 
oer
ivity property to thepotential energy.Lemma 2.4. Assume that W ∈ M2,2(R

N ) veri�es (12). Then for all f ∈ L2(RN ;R),
σ‖f‖2L2 ≤

∫

RN

(W ∗ f)(x)f(x) dx ≤ ‖W‖2,2‖f‖2L2. (23)Proof. The �rst inequality follows from Parseval's theorem,
∫

RN

(W ∗ f)(x)f(x) dx = (2π)−N

∫

RN

Ŵ (ξ)|f̂(ξ)|2 dξ ≥ σ‖f‖2L2.The se
ond inequality in (23) is immediate sin
e W ∈ M2,2(R
N ).The purpose of the last lemma in this se
tion is to establish some properties of the positivedistributions whi
h appear in Theorem 1.2. In parti
ular, we show that for these distributions(WN ) is automati
ally veri�ed if 1 ≤ N ≤ 3. 10



Lemma 2.5. Let W ∈ M1,1(R
N ) be a positive distribution. Then W ∈ Mp,p(R

N ), for any 1 ≤
p ≤ ∞ and W is a positive Borel measure of �nite mass. If 1 ≤ N ≤ 3 we also have that W satis�es(WN ).Proof. Sin
e W ∈ M1,1(R

N ), it is well known that W is a (
omplex-valued) �nite Borel measure.Then W ∈ M∞,∞(RN ) and by interpolation W ∈ Mp,p(R
N ) for any 1 ≤ p ≤ ∞. Finally, the fa
tthat W is a positive distribution implies that it is a positive measure (
f. [35℄). By Proposition 1.3we 
on
lude that W satis�es (WN ), if 1 ≤ N ≤ 3.3 Some 
onsequen
es of assumption (WN)We �rst establish some inequalities involving the 
onvolution with W that explain in part how thehypothesis (WN ) works. After that, we give the proof of Proposition 1.3 and Corollary 1.5.From now on we adopt the standard notation C(·, ·, . . . ) to represent a generi
 
onstant thatdepends only on ea
h of its arguments, and possibly on some �xed numbers su
h as the dimension.In the 
ase that W ∈ Mp,q(R

N ) we use C(W ) to denote a 
onstant that only depends on the norm
‖W‖p,q. We also use the notation p′ for the 
onjugate exponent of p given by 1/p+ 1/p′ = 1.Lemma 3.1. Let W ∈ Mp1,q1(R

N ) ∩Mp2,q2(R
N ) ∩Mp3,q3(R

N ), with
p1, p2, p3, q1, q2, q3 ≥ 1 and 1

p3
+

1

q2
=

1

q1
.Suppose that there are s1, s2 ≥ 1, su
h that

1

p1
− 1

p3
=

1

s1
,

1

q1
− 1

q3
=

1

s2
.Then for any u, v ∈ S(RN)

‖(W ∗ u)v‖Lq1 ≤ ‖W‖p2,q2‖u‖Lp2‖v‖Lp3 ,

‖(W ∗ u)v‖Lq1 ≤ ‖W‖p3,q3‖u‖Lp3‖v‖Ls2 ,

‖W ∗ (uv)‖Lq1 ≤ ‖W‖p1,q1‖u‖Lp3‖v‖Ls1 .Proof. The proof is a dire
t 
onsequen
e of Hölder inequality and the hypotheses on W .Lemma 3.2. Assume that W satis�es (WN ) and that N ≥ 4. Then W ∈ M N
N−2

,2(R
N ), W ∈

M N
N−2

,N
2

(RN ) and W ∈ M2,N
2

(RN ).Proof. From the Riesz-Thorin interpolation theorem and the fa
t that ( 12 , 2
N

) and (N−2
N , 2

N

) belongto the 
onvex hull of {(
1

2
,
1

2

)
,

(
1

p1
,
1

q1

)
,

(
1

p3
,
1

q3

)
,

(
1

p4
,
1

q4

)}
,we 
on
lude that W ∈ M2,N

2

(RN ) and W ∈ M N
N−2

,N
2

(RN ). Sin
e the 
onjugate exponent of N
N−2is N

2 , W ∈ M2,N
2

(RN ) implies that W ∈ M N
N−2

,2(R
N ).Lemma 3.3. Assume that W satis�es (WN ). Then for any u, v, w ∈ S(RN),

‖(W ∗ (uv))w‖Lγ̃ ≤ C(W )‖u‖Ls̃‖v‖Lr̃‖w‖Lr̃ , (24)for some 2 > γ̃ > 2N
N+2 , 2N

N−2 > r̃, s̃ > 2 if N ≥ 3, and 2 > γ̃ > 1, ∞ > r̃, s̃ > 2 if N = 1, 2.11



Proof. If N ≥ 4, by Lemma 3.2 we have that W ∈ M N
N−2

,N
2

(RN ). Sin
e also W ∈ Mp4,q4(R
N ),from the Riesz-Thorin interpolation theorem we dedu
e that there exist p̄ and q̄ su
h that

W ∈ Mp̄,q̄(R
N ),

N

N − 1
< p̄ <

N

N − 2
,

N

2
< q̄ < N. (25)Now we set

1

r̃
= min

{
1

2

(
1− 1

q̄

)
,
1

2p̄

}
,
1

γ̃
=

1

q̄
+

1

r̄
,
1

s̃
=

1

p̄
− 1

r̃
.In view of (25), we have 2N

N+2 < γ̃ < 2 and 2 < r̃, s̃ < N−2
2N . By Hölder inequality, we 
on
lude that

‖(W ∗ (uv))w‖Lγ̃ ≤ ‖W ∗ (uv)‖Lq̄‖w‖Lr̃

≤ ‖W‖p̄,q̄‖uv‖Lp̄‖w‖Lr̃

≤ ‖W‖p̄,q̄‖u‖Ls̃‖v‖Lr̃‖w‖Lr̃ .If N = 1, 2, 3, the proof is simpler. It is su�
ient to take q̄ = 2, p̄ = 2, s̃ = r̃ = 4, γ̃ = 4
3 in the lastinequality to dedu
e (24).Lemma 3.4. Assume that W satis�es (WN ).

(i) For any u ∈ φ+H1(RN ) we have (W ∗ (1 − |u|2))(1 − |u|2) ∈ L1(RN )

(ii) If W is also an even real-valued distribution, then for any u ∈ φ+H1(RN ) and h ∈ H1(RN ),
∫

RN

(W ∗ 〈〈u, h〉〉)(1 − |u|2) dx =

∫

RN

(W ∗ (1− |u|2))〈〈u, h〉〉 dx. (26)Proof. Let u = φ + w, with w ∈ H1(RN ). If N ≥ 4, by (10) and the Sobolev embedding theorem,we dedu
e that
(1 − |φ|2 − 2〈〈φ,w〉〉 − |w|2) ∈ L2(RN ) + L

N
N−2 (RN ).By Lemma 3.2 we have that the map h 7→ W ∗ h is 
ontinuous from L2(RN ) + L

N
N−2 (RN ) to

L2(RN ) ∩ LN
2 (RN ) and sin
e N−2

N + 2
N = 1, by Hölder inequality we 
on
lude that

(W ∗ (1− |φ|2 − 2〈〈φ,w〉〉 − |w|2))(1− |φ|2 − 2〈〈φ,w〉〉 − |w|2) ∈ L1(RN ). (27)If 1 ≤ N ≤ 3, (27) follows from the fa
t that |w|2 ∈ L2(RN ). This 
on
ludes the proof of (i).A similar argument shows that ‖(W ∗ 〈〈u, h〉〉)(1− |u|2)‖L1 <∞. Then using that W is even andFubini's theorem we obtain (ii).The previous lemmas will be useful in the next se
tions, in parti
ular to prove the lo
al well-posedness of (NGP). Now we give the proofs of Proposition 1.3 and Corollary 1.5, that involve somestraightforward 
omputations.Proof of Proposition 1.3. For the �rst part of (i), we note that the hypothesis implies that W ∈
Mp,p(R

N ) for any 3
2 ≤ p ≤ 3. Then it is su�
ient to take p1 = q1 = 3

2 , p2 = p3 = q2 = q3 = 3and p4 = q4 = 2 to see that (WN ) is ful�lled. For the se
ond part of (i), we need prove that
W ∈ M3,3(R

N ). Re
alling that Mp,q(R
N ) = Mq′,p′(RN ) for 1 < p ≤ q < ∞ and using the Rieszinterpolation theorem, we have that W ∈ Ms,t(R

N ), for every (s−1, t−1) in the 
onvex hull of
{(

1

2
,
1

2

)}
∪

3⋃

j=1

{(
1

pj
,
1

qj

)
,

(
1− 1

qj
, 1− 1

pj

)}
. (28)12



By hypothesis, pi = qi, i = 1, 2, 3, thus (WN ) implies that
1

p2
+

1

p3
=

1

p1
, 2 ≥ p1 and p2, p3 ≥ 2.Hen
e the 
onvex hull of (28) simpli�es to

{
(x, x) ∈ R

2 : min

{
1− 1

p1
,
1

p2
,
1

p1
− 1

p2

}
≤ x ≤ max

{
1

p1
, 1− 1

p2
, 1− 1

p1
+

1

p2

}}
.Arguing by 
ontradi
tion, it is simple to see that

min

{
1− 1

p1
,
1

p2
,
1

p1
− 1

p2

}
≤ 1

3
and 2

3
≤ max

{
1

p1
, 1− 1

p2
, 1− 1

p1
+

1

p2

}
.Therefore W ∈ Ms,s(R

N ), for every 3
2 ≤ s ≤ 3. In parti
ular W ∈ M2,2(R

N ) ∩M3,3(R
N ).To prove (ii), we noti
e that by interpolation we have thatW ∈ Mα,β(R

N ), for all α, β satisfying
1 ≤ α, β,

1

α
−
(
1− 1

r̄

)
≤ 1

β
≤ 1

α
. (29)We now de�ne

p2 = p3 =

{
3, if 4 ≤ N ≤ 5,
sN

sN−1 , if 6 ≤ N,
q2 = q3 =

{
3, if 4 ≤ N ≤ 5,

N, if 6 ≤ N,

p1 =

{
3
2 , if 4 ≤ N ≤ 5,
N

N−1 , if 6 ≤ N,
q1 =

{
3
2 , if 4 ≤ N ≤ 5,
p3q2
p3+q2

, if 6 ≤ N,

p4 = 2r̄
2r̄−1 , q4 = 2r̄, where

sN =





N

4
+ εN , if 6 ≤ N ≤ 7,

2(N + 1)

N + 2
, if 8 ≤ N,and εN > 0 is 
hosen small enough su
h that 0 < εN < 2− N

4 if 6 ≤ N ≤ 7. Then we have that
2N

N + 2
< sN < 2, for any N ≥ 6. (30)Using that r̄ > N

4 and (30), we 
an verify that the 
hoi
e of (pi, qi), i ∈ {1, . . . , 4}, satis�es (29) with
α = pi and β = qi, as well as all the others restri
tions in the hypothesis (WN ), whi
h 
ompletesthe proof.Proof of Corollary 1.5. By Young inequality we have that W ∈ Mp,p(R

N ), for any 1 ≤ p ≤ ∞. Inparti
ular the 
ondition W ∈ M1,1(R
N ) is ful�lled. If 1 ≤ N ≤ 3, the 
on
lusion is a 
onsequen
eof Proposition 1.3 and Theorem 1.2. If N ≥ 4, by Young inequality we have that W ∈ Mp,q(R

N ),for all 1 − 1
r ≤ 1

p ≤ 1, with 1
q = 1

p + 1
r − 1. Then the proof follows again from Proposition 1.3 andTheorem 1.2.4 Lo
al existen
eIn order to prove Theorem 1.2 we �rst are going to prove the lo
al well-posedness. Theorem 1.10is based on the fa
t that if we set u = w + φ, then u is a solution of (NGP) with initial 
ondition

u0 = φ+ w0 if and only if w solves
{
i∂tw +∆w + f(w) = 0 on R

N × R,

w(0) = w0,
(31)13



with
f(w) = ∆φ+ (w + φ)(W ∗ (1 − |φ+ w|2)).We de
ompose f as
f(w) = g1(w) + g2(w) + g3(w) + g4(w), (32)with

g1(w) = ∆φ + (W ∗ (1− |φ|2))φ,
g2(w) = −2(W ∗ 〈〈φ,w〉〉)φ,
g3(w) = −(W ∗ |w|2)φ− 2(W ∗ 〈〈φ,w〉〉)w + (W ∗ (1− |φ|2))w,
g4(w) = −(W ∗ |w|2)w.The next lemma gives some estimates on ea
h of these fun
tions.Lemma 4.1. Assume that W satis�es (WN ). Using the numbers given by (WN ) and Lemma 3.3,let r1 = r2 = 2, r3 = p3, r4 = r̃, ρ1 = ρ2 = 2, ρ3 = q′1 and ρ4 = γ̃′. Then

gj ∈ C(H1(RN ), H−1(RN )), j ∈ {1, 2, 3, 4}. (33)Furthermore, for any M > 0 there exists a 
onstant C(M,W,φ) su
h that
‖gj(w1)− gj(w2)‖

L
ρ′
j
≤ C(M,W,φ)‖w1 − w2‖

L
rj
, (34)for all w1, w2 ∈ H1(RN ) with ‖w1‖H1 , ‖w2‖H1 ≤M , and

‖gj(w)‖
W

1,ρ′
j
≤ C(M,W,φ)(1 + ‖w‖

W 1,rj
), (35)for all w ∈ H1(RN ) ∩W 1,rj(RN ) with ‖w‖H1 ≤M .Proof. Sin
e g1 is a 
onstant fun
tion of w, g1 ∈ C(H1(RN ), H−1(RN )) and (34) is trivial in this
ase. The 
ondition (35) follows from the estimate

‖g1(w)‖H1 ≤‖∇φ‖H2 + ‖W‖2,2(‖1− |φ|2‖L2‖φ‖W 1,∞ + 2‖φ‖2L∞‖∇φ‖L2).Similarly we obtain for g2,
‖g2(w1)− g2(w2)‖L2 ≤ 2‖W‖2,2‖φ‖2L∞‖w1 − w2‖L2and

‖∇g2(w)‖L2 ≤ 2‖W‖2,2‖φ‖L∞

(
‖φ‖L∞‖∇w‖L2 + 2‖∇φ‖L∞‖w‖L2

)

≤ C(W,φ)‖w‖H1 .Then we dedu
e (34) and (35) for j = 2.For g3, we have
g3(w2)− g3(w1) = (W ∗ (|w1|2 − |w2|2))φ + 2(W ∗ 〈〈φ,w1 − w2〉〉)w1

+ 2(W ∗ 〈〈φ,w2〉〉)(w1 − w2) + (W ∗ (1− |φ|2))(w1 − w2).The assumption (WN ) allows to apply Lemma 3.1 and then we derive
‖g3(w2)− g3(w1)‖Lρ′

3
≤ C(W,φ)‖w1 − w2‖Lr3 (‖w1‖Ls1 + ‖w2‖Ls1

+2‖w1‖Ls2 + 2‖w2‖Lp2 + 1).
(36)14



More pre
isely, the dependen
e on φ of the 
onstant C(W,φ) in the last inequality is given expli
itlyby max{‖φ‖L∞ , ‖1− |φ|2‖Lp2}. By the Sobolev embedding theorem
H1(RN ) →֒ Lp(RN ), ∀ p ∈

[
2,

2N

N − 2

] if N ≥ 3 and ∀ p ∈ [2,∞) if N = 1, 2. (37)In parti
ular,
‖w1‖Ls1 + ‖w2‖Ls1 + 2‖w1‖Ls2 + 2‖w2‖Lp2 ≤ C(‖w1‖H1 + ‖w2‖H1),whi
h together with (36) gives us (34) for g3. With the same type of 
omputations, taking w ∈

H1(RN ), ‖w‖H1 ≤M , we have
‖∇g3(w)‖Lρ′

3
≤C(M,W,φ)(‖∇w‖Lr3 + ‖w‖Lr3 ),where the dependen
e on φ is in terms of ‖φ‖L∞ , ‖∇φ‖L∞ , ‖1− |φ|2‖Lp2 and ‖∇φ‖Lp2 .For g4, applying Lemma 3.3 we obtain

‖g4(w1)− g4(w2)‖Lρ′
4
≤ C(W )‖w1 − w2‖Lr4 ((‖w1‖Ls + ‖w2‖Ls)‖w1‖Lr4

+‖w2‖Ls‖w2‖Lr4 )and
‖∇g4(w)‖Lρ′

4
≤C(W )‖∇w‖Lr4 ‖w‖Lr4‖w‖Ls .As before, using (37), we 
on
lude that g4 veri�es (34)-(35).Sin
e for 2 ≤ j ≤ 4, 2 ≤ rj <

2N
N−2 (2 ≤ rj <∞ if N = 1, 2), we have the 
ontinuous embeddings

H1(RN ) →֒ Lrj(RN ) and Lr′j (RN ) →֒ H−1(RN ).Then inequality (34) implies (33), for j ∈ {2, 3, 4}.Now we analyze the potential energy asso
iated to (31). For any v ∈ H1(RN ) we set
F (v) :=

∫

RN

〈〈∆φ, v〉〉 dx − 1

4

∫

RN

(W ∗ (1 − |φ+ v|2))(1 − |φ+ v|2) dx, (38)and using the notation of Lemma 4.1, we �x for the rest of this se
tion
r = max{r1, r2, r3, r4, ρ1, ρ2, ρ3, ρ4}. (39)Lemma 4.2. Assume that W satis�es (WN ). Then the fun
tional F is well-de�ned on H1(RN ).If moreover W is a real-valued even distribution, we have the following properties.

(i) F is Fré
het-di�erentiable and
F ∈ C1(H1(RN ),R) with F ′ = f. (40)

(ii) For any M > 0, there exists a 
onstant C(M,W,φ) su
h that
|F (u)− F (v)| ≤ C(M,W,φ)(‖u − v‖L2 + ‖u− v‖Lr), (41)for any u, v ∈ H1(RN ), with ‖u‖H1 , ‖v‖H1 ≤M .15



Proof. By Lemma 3.4, F is well-de�ned in H1(RN ) for any N . To prove (i), we 
ompute now theGâteaux derivative of F . For h ∈ H1(RN ) we have
dGF (v)[h] = lim

t→0

F (v + th)− F (v)

t

=

∫

RN

〈〈∆φ, h〉〉 dx +
1

2

∫

RN

(W ∗ 〈〈φ + v, h〉〉)(1 − |φ+ v|2) dx

+
1

2

∫

RN

(W ∗ (1− |φ+ v|2))〈〈φ + v, h〉〉 dx.Sin
e W is an even distribution, (26) implies that the last two integrals are equal. Finally we getthat
dGF (v)[h] =

∫

RN

〈〈f(v), h〉〉 dx = 〈f(v), h〉H−1,H1 .From (32) and (33), we have that f ∈ C(H1(RN ), H−1(RN )). Hen
e the map v → dGF (v) is
ontinuous from H1(RN ) to H−1(RN ), whi
h implies that F is 
ontinuously Fré
het-di�erentiableand satis�es (40).For the proof of (ii), using (40) and the mean-value theorem, we have
F (u)− F (v) =

∫ 1

0

d

ds
F (su+ (1− s)v) ds =

∫ 1

0

〈f(su+ (1− s)v), u − v〉H−1,H1 ds.Then by Lemma 4.1,
|F (u)− F (v)| ≤ sup

s∈[0,1]

4∑

j=1

‖gj(su + (1− s)v)‖
L

ρ′
j
‖u− v‖Lρj

≤
4∑

j=1

C(M,W,φ)(‖u‖Lrj + ‖v‖Lrj + 1)‖u− v‖Lρj .

(42)Sin
e we assume that ‖u‖H1 , ‖v‖H1 ≤M , (37) implies that
‖u‖Lrj + ‖v‖Lrj + 1 ≤ C(M). (43)Also, it follows from Lp-interpolation and Young's inequality that

‖u− v‖Lρj ≤ ‖u− v‖θjL2‖u− v‖1−θj
Lr ≤ ‖u− v‖L2 + ‖u− v‖Lr , (44)with θj = 2(r−ρj)

ρj(r−2) . By 
ombining (42), (43) and (44), we obtain (ii).Proof of Theorem 1.10. Re
alling that r was �xed in (39), we de�ne q by 1
q = N

2

(
1
2 − 1

r

). Given
T,M > 0, we 
onsider the 
omplete metri
 spa
e

XT,M = {w ∈ L∞((−T, T ), H1(RN )) ∩ Lq((−T, T ),W 1,r(RN )) :

‖w‖L∞((−T,T ),H1) ≤M, ‖w‖Lq((−T,T ),W 1,r) ≤M},endowed with the distan
e
dT (w1, w2) = ‖w1 − w2‖L∞((−T,T ),L2) + ‖w1 − w2‖Lq((−T,T ),Lr). (45)The estimates given in Lemmas 4.1, 4.2 and the Stri
hartz estimates show that the fun
tional

Φ(w) = eit∆w0 + i

∫ t

0

ei(t−s)∆f(w(s)) ds16



is a 
ontra
tion in XT,M for some M ≤ C(‖w0‖H1 + 1) and T small enough, but depending onlyon ‖w0‖H1 . Then we have a solution given by Bana
h's �xed-point theorem. The arguments to
omplete Theorem 1.10 are rather standard. For instan
e, Theorem 4.4.6 in [10℄ automati
allyimplies the existen
e, uniqueness, the blow-up alternative and that the fun
tion L(t) given by
L(t) := L1(t) +

1

4

∫

RN

(W ∗ (1− |φ+ w(t)|2))(1 − |φ+ w(t)|2) dx,with
L1(t) =

1

2

∫

RN

|∇w(t)|2 dx−
∫

RN

〈〈∆φ,w(t)〉〉 dx,is 
onstant for all t ∈ (−Tmin, Tmax). Noti
ing that
L1(t) =

1

2

∫

RN

|∇w(t) +∇φ|2 dx− 1

2

∫

RN

|∇φ|2 dx,we 
on
lude that the energy is 
onserved.However, the 
ontinuous dependen
e on the initial data in H1(RN ) is not obvious, be
ause thedistan
e (45) does not involve derivatives. Therefore we give the 
omplete proof of this point. Herewe will omit the dependen
e on W and φ in the generi
 
onstant C, sin
e it plays no role in theanalysis of 
ontinuous dependen
e. Let w0,n, w0 ∈ H1(RN ) be su
h that
w0,n → w0 in H1(RN ).Then for some n0 ≥ 0,

‖w0,n‖H1 ≤ ‖w0‖H1 + 1, ∀n ≥ n0.We denote wn and w the solutions with initial data w0,n and w0, respe
tively. Then by the �xed-point argument, there exist T > 0 and a 
onstant C(‖w0‖H1), both depending only on ‖w0‖H1 ,su
h that wn and w are de�ned in [−T, T ] for all n ≥ n0 and
‖wn‖L∞((−T,T ),H1) + ‖w‖L∞((−T,T ),H1) ≤ C(‖w0‖H1), ∀n ≥ n0. (46)Sin
e

wn(t)− w(t) = eit∆(w0,n − w0) + i

∫ t

0

ei(t−s)∆(f(wn(s)) − f(w(s))) ds,using Stri
hartz estimates we have that
dT (wn, w) ≤ C‖w0,n − w0‖L2 + C

4∑

j=1

‖gj(wn)− gj(w)‖
L

γ′

j ((−T,T ),L
ρ′
j )
, (47)with 1

γj
= N

2

(
1
2 − 1

ρj

). By Lemma 4.1, (46), using as in (44) an Lp-interpolation inequality andYoung's inequality, we dedu
e that
‖gj(wn)− gj(w)‖ρ′

j
≤ C(‖w0‖H1)(‖wn − w‖L2 + ‖wn − w‖Lr). (48)Applying Hölder inequality with βj = 1
γ′

j
− 1

q ,
‖wn − w‖

L
γ′

j ((−T,T ),Lr)
≤ ‖wn − w‖Lq((−T,T ),Lr)(2T )

βj . (49)Noti
e that 0 < βj ≤ 1 sin
e 2 ≤ ρj, rj <
2N
N−2 . Assuming T ≤ 1 and putting together (48) and (49)we 
on
lude that

‖gj(wn)− gj(w)‖
L

γ′

j ((−T,T ),L
ρ′
j )

≤ C(‖w0‖H1)T βdT (wn, w), (50)17



with β = min{βj, 1/γ′j : 1 ≤ j ≤ 4}. Choosing T su
h that 4T βC(‖w0‖H1) ≤ 1
2 , (47) and (50) give

dT (wn, w) ≤ 2C(‖w0‖H1)‖w0,n − w0‖H1 .Hen
e
wn → w, in C([−T, T ], L2(RN )) ∩ Lq((−T, T ), Lr(RN )).Thus from (46) and the Gagliardo-Nirenberg inequality, we 
on
lude that wn → w in C([−T, T ], Lp(RN )),for every 2 ≤ p <∞ if N = 1, 2 and 2 ≤ p < 2N

N−2 if N ≥ 3. Using the inequality (41) in Lemma 4.2,it follows that F (wn) → F (w) in C([−T, T ]). Sin
e the energy is 
onserved for w and wn, thisimplies that
‖∇wn‖L2 → ‖∇w‖L2 in C([−T, T ]).In addition, from the equation i∂twn = −∆wn − f(wn) in [−T, T ], we get

‖∂twn‖H−1 ≤ ‖wn‖H1 +

4∑

j=1

‖gj(wn)‖H−1 ,Hen
e Lemma 4.1 and (46) provide a uniform bound for wn in C1([−T, T ], H−1(RN )). Therefore
wn → w in C([−T, T ], H1(RN )) (see Proposition 1.3.14 in [10℄). A 
overing argument allows us to�nish the proof in any 
losed bounded interval.Sin
e the generalized momentum still needs a pre
ise de�nition, we will postpone the proof ofits 
onservation until Se
tion 7.We prove now Propositions 1.4 and 1.7 be
ause the arguments involved are very similar to thoseused in this se
tion. For these proofs we suppose that Theorem 1.2 is already proved.Proof of Proposition 1.4. Let un = φ+ wn and u∞ = φ + w∞, where wn, w∞ ∈ C(R, H1(RN )), bethe global solution of (NGP) with potentials Wn and W∞, respe
tively, with the same initial data
u0 = φ+w0, with w0 ∈ H1(RN ). In the same spirit of the proof of Theorem 1.10, for v ∈ H1(RN ),we set

fn(v) = g1,n(v) + g2,n(v) + g3,n(v) + g4,n(v),with
g1,n(v) = ∆φ+ (Wn ∗ (1− |φ|2))φ,
g2,n(v) = −2(Wn ∗ 〈〈φ, v〉〉)φ,
g3,n(v) = −(Wn ∗ |v|2)φ− 2(Wn ∗ 〈〈φ, v〉〉)w + (Wn ∗ (1− |φ|2))v,
g4,n(v) = −(Wn ∗ |v|2)v,for any n ∈ N ∪ {∞}. Noti
ing that for any v1, v2 ∈ H1(RN ), 1 ≤ j ≤ 4,
gj,n(v1)− gj,m(v2) = (gj,n(v1)− gj,n(v2)) + (gj,n(v2)− gj,m(v2)) ,Proposition 1.3, Lemma 3.1, the proof of Lemma 3.3 and the same argument given in Lemma 4.1allows us to 
on
lude that (we omit from now on the dependen
e on φ)

‖gj,n(v1)− gj,m(v2)‖
L

ρ′
j
≤ C(Wn,M)‖v1 − v2‖Lrj + C(Wn −Wm,M)(‖v2‖Lrj+1), (51)for any n,m ∈ N ∪ {∞} and v1, v2 ∈ H1(RN ) with ‖v1‖H1 , ‖v2‖H1 ≤ M , with (the new 
hoi
e of)

ρj , rj given by
ρ1 = ρ2 = r1 = r2 = 2, ρ3 = r3 = 3, ρ4 = r4 = 4, (52)and

C(W,M) = σ(W )C(M), with σ(W ) = max{‖W‖2,2, ‖W‖3,3}. (53)18



By the uniqueness provided by Theorem 1.2, the fun
tions wn are given by the �xed-point argu-ment of the proof of Theorem 1.10. Sin
e the estimates for the �xed point 
an be obtained usingLemma 4.1, but with the values in (52), and by (14) we may assume that for k = 2, 3

1

2
‖W∞‖k,k ≤ ‖Wn‖k,k ≤ 2‖W∞‖k,k,so that we have uniform bounds on Wn. Therefore we 
on
lude that there exist some T ≤ 1 and

C > 0 that only depend on ‖w0‖H1 , ‖W∞‖2,2 and ‖W∞‖3,3 su
h that
‖wn‖L∞((−T,T ),H1) ≤ C, for any n ∈ N ∪ {∞}. (54)Using the distan
e

dT (w1, w2) = ‖w1 − w2‖L∞((−T,T ),L2) + ‖w1 − w2‖
L

8

N ((−T,T ),L4)
,the estimates (51), (54) and following the lines of the proof of Theorem 1.10, it leads to

dT (wn, w∞) ≤ Cσ(Wn −W∞).Hen
e the hypothesis (14) and (53) imply that
wn → w∞ in C([−T, T ], L2(RN )) ∩ L 8

N ((−T, T ), L4(RN )).Then (54) and the Gagliardo-Nirenberg inequality imply that
wn → w∞ in C([−T, T ], Lp(RN )), ∀ p ∈ [2,∞) if N = 1, 2 and ∀ p ∈

[
2,

2N

N − 2

) if N ≥ 3. (55)We denote by Fn the fun
tion given by (38), with W repla
ed by Wn, so that the 
onservedenergy for ea
h un is
En(un(t)) = ‖∇wn(t)‖L2 + Fn(wn(t)) = ‖∇w0‖L2 + Fn(w0), for any t ∈ R. (56)The inequality (51) and similar arguments as in the proof of Lemma 4.2 give for any v1, v2 ∈ H1(RN )with ‖v1‖H1 , ‖v2‖H1 ≤M , that there exists a 
onstant C depending only on M , ‖W∞‖2,2 and

‖W∞‖3,3, su
h that
|Fn(v1)− Fm(v2)| ≤ C (‖v1 − v2‖L2 + ‖v1 − v2‖L4) + Cσ(Wn −Wm). (57)By putting together (54), (55) and (57), we dedu
e that Fn(wn) → F∞(w∞) in C([−T, T ]). Thenby (56) we have that ‖∇wn‖L2 → ‖∇w∞‖L2 in C([−T, T ]). The 
on
lusion follows as in the proofof Theorem 1.10.Proof of Proposition 1.7. Using the notation introdu
ed at the beginning of this se
tion, by Lemma5.3.1 in [10℄, we only need to prove that for any 1 ≤ j ≤ 4 and any w ∈ Hs(RN ) su
h that

‖w‖H1 ≤M, we have
‖gj(w)‖L2 ≤ C(W,M,φ) (1 + ‖w‖Hs) , (58)for some 0 < s < 2. From the estimate (35) in Lemma 4.1 and the Sobolev embedding theorem,we have the inequality (58) for j = 1, 2 for any s ≥ 1. For j = 3, 4 we note that by the Sobolevembedding theorem,

W 1,p(RN ) →֒ L2(RN ), ∀p ∈
[

2N

N + 2
, 2

] if N ≥ 3 and ∀p ∈ [1, 2] if N = 1, 2,and for any
r ∈

[
2,

2N

N − 2

]
, if N ≥ 3 and r ∈ [2,∞) if N = 1, 2,there exists 3

2 < s < 2 su
h that Hs(RN ) →֒ W 1,r(RN ). Thus we have for j = 3, 4 that
W 1,ρ′

j (RN ) →֒ L2(RN ) and Hsj (RN ) →֒ W 1,rj(RN ), for some sj < 2. Setting s = max{s3, s4},from the inequality (35) we obtain estimate (58)19



5 Global existen
eIn order to 
omplete the proof of Theorem 1.2 we need to prove that the solutions given by Theo-rem 1.10 are global. We do this by establishing an appropriate estimate for ‖w(t)‖L2 . We distinguishthree sub
ases, asso
iated to the di�erent assumptions on W .Proof of Theorem 1.2-(i)-(a). We re
all that by Theorem 1.10 we already have the 
onservation ofenergy
E0 =

1

2

∫

RN

|∇w(t) +∇φ|2 dx+
1

4

∫

RN

(W ∗ (|φ+ w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx, (59)for any t ∈ (−Tmin, Tmax). Sin
e we are assuming that W is a positive de�nite distribution, thepotential energy, i.e. the se
ond integral in (59), is nonnegative. Hen
e
1

2

∫

RN

|∇w(t) +∇φ|2 dx ≤ E0and using the elementary inequality
∫

RN

|∇w∇φ| dx ≤ 1

4
‖∇w‖2L2 + ‖∇φ‖2L2 , (60)we 
on
lude that

‖∇w(t)‖2L2 ≤ 4E0 + 2‖∇φ‖2L2, t ∈ (Tmin, Tmax), (61)whi
h gives a uniform bound for ‖∇w(t)‖L2 . Therefore we only need an appropriate bound for
‖w(t)‖L2 to 
on
lude that

sup{‖w(t)‖H1 : t ∈ (−Tmin, Tmax)} <∞. (62)In virtue of the blow-up alternative in Theorem 1.10, we will dedu
e from (62) that Tmax = Tmin =
∞, whi
h will 
omplete the proof.Now we prove the bound for ‖w(t)‖L2 . For any t ∈ (−Tmin, Tmax), we multiply (in the H−1−H1duality sense) the equation (31) by iw, to get

1

2

d

dt
‖w(t)‖2L2 =Re

∫

RN

if(w(t))w(t) dx

= − Im

∫

RN

(∆φ+ φ(W ∗ (1− |φ+ w(t)|2))w(t) dx.Then
1

2

∣∣∣∣
d

dt
‖w(t)‖2L2

∣∣∣∣ ≤‖∆φ‖L2‖w(t)‖L2 + ‖φ‖L∞

∫

RN

|W ∗ (|φ+ w(t)|2 − 1)||w(t)| dx. (63)We bound the last integral in (63) by H1(t) +H2(t), with
H1(t) =

∫

RN

|W ∗ (|φ|2 − 1 + 2〈〈φ,w(t)〉〉)||w(t)| dx,

H2(t) =

∫

RN

|W ∗ |w(t)|2||w(t)| dx.Sin
e W ∈ M2,2(R
N ),
|H1(t)| ≤‖W ∗ (|φ|2 − 1 + 2〈〈φ,w〉〉)‖L2‖w(t)‖L2

≤‖W‖2,2
(
‖|φ|2 − 1‖L2 + 2‖φ‖L∞‖w(t)‖L2

)
‖w(t)‖L2 .20



Therefore we have
|H1(t)| ≤ C(W,φ)(1 + ‖w(t)‖2L2). (64)If N ≥ 4, by Lemma 3.2 and the Sobolev embedding theorem,

|H2(t)| ≤‖W ∗ |w(t)|2‖L2‖w(t)‖L2

≤C(W )‖w(t)‖2
L

2N
N−2

‖w(t)‖L2

≤C(W )‖∇w(t)‖2L2‖w(t)‖L2 .By (61) we 
on
lude that
|H2(t)| ≤ C(W,φ,E0)‖w(t)‖L2 , for all N ≥ 4. (65)If N = 2, 3, we only need to use that W ∈ M2,2(R

N ), together with the Gagliardo-Nirenberginequality. In fa
t,
|H2(t)| ≤‖W ∗ |w(t)|2‖L2‖w(t)‖L2

≤C(W )‖w(t)‖2L4‖w(t)‖L2

≤C(W )‖∇w(t)‖
N
2

L2‖w(t)‖3−
N
2

L2 .Sin
e we are 
onsidering N = 2, 3, using (61) it follows that
‖H2(t)‖L2 ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2), N = 2, 3. (66)From inequalities (63)�(66) we have that for any N ≥ 2

∣∣∣∣
d

dt
‖w(t)‖2L2

∣∣∣∣ ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2), t ∈ (−Tmin, Tmax). (67)By Gronwall's lemma we 
on
lude that
‖w(t)‖L2 ≤ C(W,φ,E0)e

C(W,φ,E0)|t|(1 + ‖w0‖L2), t ∈ (−Tmin, Tmax).As we dis
ussed before, this estimate implies (62), whi
h �nishes the proof if W is positive de�-nite.Remark 5.1. We note that the argument given in the proof Theorem 1.2-(i)-(a) fails in dimension
N = 1. In this 
ase if we apply the Gagliardo-Nirenberg inequality to H2, instead of (67) we obtaina bound for ‖w(t)‖2L2 in terms of ‖w(t)‖5/2L2 , whi
h prevents to 
on
lude applying Gronwall's lemma.Proof of Theorem 1.2-(i)-(b). In the 
ase thatW is a positive distribution, we 
annot infer from (59)a uniform bound on ‖∇w(t)‖L2 . However, using that W ∈ M1,1(R

N ), we will see that ‖∇w(t)‖L2
an be bounded in terms of ‖w(t)‖L2 and that we may dedu
e an inequality su
h as (67) (withoutassuming that ‖∇w(t)‖L2 is a priori bounded). Then the 
on
lusion follows as before.Let A = 4‖φ‖L∞ + 1. Setting
wA(x, t) = w(x, t)χ({y ∈ R

N : |w(y, t)| ≤ A})(x),
wAc(x, t) = w(x, t)χ({y ∈ R

N : |w(y, t)| > A})(x),where χ is the 
hara
teristi
 fun
tion, we dedu
e that w = wA + wAc , |w| = |wA| + |wAc |, |w|2 =
|wA|2 + |wAc |2 and

∫

RN

(W ∗ (|φ + w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx = I1(t) + I2(t) + I3(t), (68)21



with
I1(t) =

∫

RN

(W ∗ (|φ|2 − 1 + 2〈〈φ,w(t)〉〉))(|φ|2 − 1 + 2〈〈φ,w(t)〉〉) dx

+ 2

∫

RN

(W ∗ |w(t)|2)(|φ|2 − 1) dx,

I2(t) =

∫

RN

(W ∗ |w(t)|2)(4〈〈φ,wA(t)〉〉 + |wA(t)|2) dx,

I3(t) =

∫

RN

(W ∗ |w(t)|2)(4〈〈φ,wAc(t)〉〉 + |wAc(t)|2) dx.Noti
e that we have used that W is even to de
ompose it in terms of I1, I2 and I3. Sin
e the energy(59) is 
onserved in the maximal interval (−Tmin, Tmax), using (60) and (68), we have that for any
t ∈ (−Tmin, Tmax),

‖∇w(t)‖2L2 + I3(t) ≤ |I1(t)|+ |I2(t)|+ 4|E0|+ 2‖∇φ‖2L2. (69)Sin
e W is a positive distribution, the 
hoi
e of A implies that
I3(t) ≥

∫

RN

(W ∗ |w(t)|2)|wAc(t)|(|wAc (t)| − 4‖φ‖L∞) dx

≥
∫

RN

(W ∗ |w(t)|2)|wAc(t)| dx ≥ 0,

(70)so that I3 is nonnegative. Using that W ∈ M1,1(R
N ) we also have

|I1(t)| ≤‖W‖2,2(‖|φ|2 − 1‖L2 + 2‖φ‖L∞‖w‖L2)2 + 2‖W‖1,1‖w‖2L2(‖φ‖2L∞ + 1) (71)and
|I2(t)| ≤ ‖W‖1,1(4A‖φ‖L∞ +A2)‖w(t)‖2L2 . (72)From inequalities (69), (71) and (72), we obtain that

‖∇w(t)‖2L2 + I3(t) ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2), (73)for any t ∈ (−Tmin, Tmax).Let us set
J1(t) =

∫

RN

|(W ∗ (|φ|2 − 1 + 2〈〈φ,w(t)〉〉))w(t)| dx,

J2(t) =

∫

RN

|(W ∗ |w(t)|2)wA(t)| dx,

J3(t) =

∫

RN

|(W ∗ |w(t)|2)wAc(t)| dx.Then the last integral in (63) is bounded by J1(t) + J2(t) + J3(t). As before, we 
on
lude that
J1(t) + J2(t) ≤ C(W,φ)(1 + ‖w(t)‖2L2). (74)From (70) we have J3(t) ≤ I3(t). Then (73) and (70) imply that
J3(t) ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2). (75)The estimates (74) and (75), together with (63), provide again the inequality (67), and then theproof is 
ompleted as in the previous 
ase. 22



Proof of Theorem 1.2-(ii). As before, the lo
al well-posedness follows from Theorem 1.10. Moreover,from Theorem 1.2-(i)-(a) we have the global well-posedness for N ≥ 2. From Proposition 2.2 wehave that W is a positive de�nite distribution and, as shown before, this implies that ‖∇w(t)‖L2is uniformly bounded in the maximal interval (−Tmin, Tmax) in terms of E0 and φ (see inequality(61)). Then it only remains to prove the inequality (13), for t ∈ (−Tmin, Tmax).The argument follows the lines of the proof in [2℄ for the lo
al Gross-Pitaevskii equation. Forsake of 
ompleteness we give the details.Sin
e W is positive de�nite, from the 
onservation of energy we have
0 ≤

∫

RN

(W ∗ (|φ + w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx ≤ 4E0. (76)On the other hand, Lemma 2.4 gives a lower bound for the potential energy
σ‖|φ+ w(t)|2 − 1‖2L2 ≤

∫

RN

(W ∗ (|φ+ w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx. (77)From (63) and using Hölder inequality we obtain
1

2

∣∣∣∣
d

dt
‖w(t)‖2L2

∣∣∣∣ ≤‖∆φ‖L2‖w(t)‖L2 + ‖W‖2,2‖φ‖L∞‖|φ+ w(t)|2 − 1‖L2‖w(t)‖L2 . (78)Thus from (76), (77) and (78), we have that for any δ > 0

1

2

∣∣∣∣
d

dt
(‖w(t)‖2L2 + δ)

∣∣∣∣ ≤ (‖w(t)‖2L2 + δ)
1

2

(
‖∆φ‖L2 + ‖W‖2,2‖φ‖L∞

√
4E0

σ

)
.Dividing by ‖w(t)‖2L2 + δ > 0, integrating and then taking δ → 0 we 
on
lude that

‖w(t)‖L2 ≤
(
‖∆φ‖L2 + ‖W‖2,2‖φ‖L∞

√
4E0

σ

)
|t|+ ‖w0‖L2 , (79)for any t ∈ (−Tmin, Tmax). As dis
ussed before, this implies that ‖w(t)‖H1 is uniformly boundedin (−Tmin, Tmax). Therefore by the blow-up alternative, we infer that Tmin = Tmax = ∞. Sin
e

u(t) = w(t) + φ and u0 = w0 + φ, (79) implies (13), �nishing the proof.6 Equation (NGP) in energy spa
eWe re
all the following results about the energy spa
e E(RN ). We refer to [19, 18, 17℄ for theirproofs.Lemma 6.1. Let u ∈ E(RN ). Then there exists φ ∈ C∞
b ∩ E(RN ) with ∇φ ∈ H∞(RN ), and

w ∈ H1(RN ) su
h that u = φ+ w.Lemma 6.2. Let 1 ≤ N ≤ 4. Then E(RN ) is a 
omplete metri
 spa
e with the distan
e (15),
E(RN ) +H1(RN ) ⊂ E(RN ) and the maps

u ∈ E(RN ) 7→ ∇u ∈ L2(RN ), u ∈ E(RN ) 7→ 1− |u|2 ∈ L2(RN ),

(u,w) ∈ E(RN )×H1(RN ) 7→ u+ w ∈ E(RN )are 
ontinuous. 23



Lemma 6.3. Assume 1 ≤ N ≤ 4. Let W ∈ M2,2(R
N ), u ∈ C(R, E(RN )), v ∈ C(R, L2(RN )) and

Φ(t) :=

∫ t

0

ei(t−s)∆u(s)(W ∗ v(s)) ds, t ∈ [0, T ].Then Φ ∈ C([0, T ], L2(R2)) and there exists a universal 
onstant C su
h that
‖Φ‖L∞((0,T ),L2) ≤ Cmax{T, T 8−N

N }‖W‖2,2(‖1−|u|2‖L∞((0,T ),L2)+‖∇u‖L∞((0,T ),L2))‖v‖L∞((0,T ),L2).Proof. By Lemma 1 in [19℄ and Lemma 6.2, we may de
ompose u(t) = u1(t) + u2(t), with
‖u1‖L∞(R,L∞) ≤ 3 and

‖u2‖L∞((0,T ),H1) ≤ C(‖1− |u|2‖L∞((0,T ),L2) + ‖∇u‖L∞((0,T ),L2)). (80)Let us set
Φj(t) :=

∫ t

0

ei(t−s)∆uj(s)(W ∗ v(s)) ds, j = 1, 2.By the Stri
hartz estimates we have that Φ1 ∈ C([0, T ], L2(R2)) and
‖Φ1‖L∞((0,T ),L2) ≤ CT ‖W‖2,2‖v‖L∞(R,L2). (81)Sin
e (8/N, 4) is an admissible Stri
hartz pair in dimension 1 ≤ N ≤ 4, we also infer that Φ2 ∈

C([0, T ], L2(R2)) and
‖Φ2‖L∞((0,T ),L2) ≤ CT

8−N
N ‖u(W ∗ v)‖L∞(R,L4/3)

≤ CT
8−N
N ‖W‖2,2‖u‖L∞(R,L4)‖v‖L∞(R,L2)

(82)Combining (80)-(82) and using the Sobolev embedding H1(RN ) →֒ L4(RN ), the 
on
lusion follows.Proof of Theorem 1.6. After Theorem 1.2, the proof follows the same arguments given in [17℄. Forsake of 
ompleteness we sket
h the proof.Given u0 ∈ E(RN ), by Lemma 6.1 we have that u0 = φ + w̃0, for some w̃0 ∈ H1(RN ) and
φ satisfying (10). Thus Theorem 1.2 gives a solution of (NGP) of the form u = φ + w̃, with
w̃ ∈ C(R, H1(RN )). Therefore u = u0 + w, with w = w̃ − w̃0 is the desired solution. To prove theuniqueness in the energy spa
e, we 
onsider 1 ≤ N ≤ 4. Let v ∈ C(R, E(RN )) be a mild solution of(NGP) with v(0) = u0. It is su�
ient to show that v − u0 ∈ C(R, H1(RN )), be
ause then we mayapply the uniqueness result given by Theorem 1.2. We do this by proving that u−v ∈ C(R, H1(RN )).Note that by Lemma 6.2, u ∈ u0 + C(R, H1(RN )) ⊂ C(R, E(RN )) and ∇u,∇v ∈ C(R, L2(RN )). Itonly remains to prove that u− v ∈ C(R, L2(RN )). Let T > 0 and t ∈ [0, T ], then

u(t)− v(t) = i

∫ t

0

ei(t−s)∆(G(u(s)) −G(v(s))) ds,with
G(u)−G(v) = u(W ∗ (|v|2 − |u|2)) + (u− v)(W ∗ (1− |v|2)).Applying Lemma 6.3 to u(W ∗ (|v|2 − |u|2)) and (u − v)(W ∗ (1 − |v|2)), we 
on
lude that u− v ∈

C([0, T ], L2(RN )).7 Other 
onservation lawsIn this se
tion we 
onsider a global solution u of (NGP) given by Theorem 1.2. We have already seenthat the energy is 
onserved by the �ow of this solution. Now we dis
uss the notions of momentumand mass asso
iated to the equation (NGP), that are also formally 
onserved.24



7.1 The momentumThe ve
torial momentum for (NGP) is given by
p(u) =

1

2

∫

RN

〈〈i∇u, u〉〉 dx. (83)A formal 
omputation shows that the derivative of the momentum is zero and thus it is a 
onservedquantity. Moreover, if u = φ+ w we have
p(u) =

1

2

∫

RN

〈〈i∇φ, φ〉〉 dx +
1

2

∫

RN

〈〈i∇w,w〉〉 dx

+
1

2

∫

RN

〈〈i∇φ,w〉〉 dx+
1

2

∫

RN

〈〈i∇w, φ〉〉 dx.Here the problem is that 〈〈i∇φ, φ − 1〉〉 and 〈〈i∇w, φ − 1〉〉 are not ne
essarily integrable for w ∈
C(R, H1(RN )). However, a formal integration by parts yields

p(u) =
1

2

∫

RN

〈〈i∇φ, φ〉〉 dx+
1

2

∫

RN

〈〈i∇w,w〉〉 dx +

∫

RN

〈〈i∇φ,w〉〉 dx, (84)redu
ing the ill-de�ned term to 〈〈i∇φ, φ〉〉, supposing that we 
an justify the integration by parts. Inorder to give a rigorous sense to these 
omputations, we use the following de�nition proposed byMari³ in [32℄.De�nition 7.1. Let X (RN ) = {∇v : v ∈ Ḣ1(RN )} and Xj(R
N ) = {∂jv : v ∈ Ḣ1(RN )}, with

j = 1, . . . , N. For any h1 ∈ L1(RN ) and h2 ∈ Xj(R
N ) we de�ne the linear operator Lj on L1(RN )+

Xj(R
N ) by

Lj(h1 + h2) =
1

2

∫

RN

h1 dx.Lemma 7.2. Let N ≥ 2 and j ∈ {1, . . . , N}. Then
∫

RN

h = 0, for any h ∈ L1(RN ) ∩ Xj(R
N ).In parti
ular Lj is a well-de�ned linear 
ontinuous operator on L1(RN )+Xj(R

N ) in any dimension
N ≥ 2.Proof. The proof of Lemma 7.2 is given by Mari³ (Lemma 2.3 in [32℄) in the 
ase N ≥ 3. Thesame argument works in dimension two, provided that a fun
tion in Ḣ1(R2) de�nes a tempereddistribution. In fa
t, this last point was shown by Gérard (see [18℄, p. 8), 
on
luding the proof.Following the ideas proposed in [32℄ in dimension N ≥ 3, we have the following result that isessential to de�ne our notion of momentum.Lemma 7.3. Let N ≥ 2, j = 1, . . . , N and w ∈ H1(RN ). Then 〈〈i∂jφ, φ〉〉 ∈ L1(RN ) + Xj(R

N ),
〈〈i∂jφ,w〉〉 ∈ L1(RN ), 〈〈iφ, ∂jw〉〉 ∈ L1(RN ) + Xj(R

N ) and
Lj(〈〈i∂jφ,w〉〉) = −Lj(〈〈iφ, ∂jw〉〉). (85)Proof. The assumption (10) implies that there is a radius R > 1 su
h that |φ(x)| ≥ 1

2 , for all
x ∈ B(0, R)c and φ is C1 in B(0, R)c. Then, there are some s
alar fun
tions ρ̃, θ̃ ∈ C1(B(0, R)c) ∩
H1lo
(B(0, R)c) su
h that

φ = ρ̃eiθ̃, on B(0, R)c.25



Moreover, sin
e ∂jφ ∈ L2(RN ) and
|∂jφ|2 = |∂j ρ̃|2 + ρ̃2|∂j θ̃|2, on B(0, R)cwe dedu
e that ∂j ρ̃, ∂j θ̃ ∈ L2(B(0, R)c). By Whitney extension theorem (
f. [29℄, p. 167), thereexist s
alar fun
tions ρ, θ ∈ C1(RN ) su
h that ρ = ρ̃ and θ = θ̃ on B(0, R)c. Setting

φ1 = ρeiθ and φ2 = φ− φ1,we have
〈〈i∂jφ, φ〉〉 = 〈〈i∂jφ1, φ1〉〉+ 〈〈i∂jφ1, φ2〉〉+ 〈〈i∂jφ2, φ1〉〉+ 〈〈i∂jφ2, φ2〉〉. (86)Sin
e suppφ2, supp∇φ2 ⊂ B̄(0, R), the last three terms in the r.h.s. of (86) belong to L1(RN ). Forthe remaining term, a dire
t 
omputation gives

〈〈i∂jφ1, φ1〉〉 = −ρ2∂jθ = (1− ρ2)∂jθ − ∂jθ, on R
N . (87)The fa
t that ∂j θ̃ ∈ L2(B(0, R)c) implies that ∂jθ ∈ L2(RN ) and from (10) it follows that

|ρ|2 − 1 ∈ L2(RN ). Therefore from (87) we 
on
lude that 〈〈i∂jφ1, φ1〉〉 ∈ L1(RN ) + Xj(R
N ) andhen
e 〈〈i∂jφ, φ〉〉 ∈ L1(RN ) + Xj(R

N ).To �nish the proof, we noti
e that from (10) and the above 
omputations we also have that φ1 ∈
X (RN )∩C1(RN )∩W 1,∞(RN ) and φ2 ∈ H1(RN ). Then a slight modi�
ation of the argument givenin Lemma 2.5 in [32℄, allows us to dedu
e that 〈〈i∂jφ,w〉〉 ∈ L1(RN ), 〈〈iφ, ∂jw〉〉 ∈ L1(RN ) + Xj(R

N )and the identity (85).In virtue of Lemma 7.3 and making an analogy to (83), for N ≥ 2 and u ∈ φ + H1(RN ), wede�ne the generalized momentum q = (q1, . . . , qN ) as
qj(u) = Lj(〈〈i∂ju, u〉〉), j = 1 . . . , N.Furthermore, by (85) we have

qj(u) = Lj(〈〈i∂jφ, φ〉〉) +
1

2

∫

RN

〈〈i∂jw,w〉〉 dx+

∫

RN

〈〈i∂jφ,w〉〉 dx, (88)whi
h 
an be seen as a rigorous formulation of (84).In dimension one, the operator Lj is not well-de�ned. In fa
t, following the idea of the proof ofLemma 7.3, if we assume that u = ρeiθ then
〈〈iu′, u〉〉 = −ρ2θ′ = (1− ρ2)θ′ − θ′.Supposing that lim

R→∞
(θ(R)− θ(−R)) exists, we would have

∫

R

θ′(x) dx = lim
R→∞

(θ(R)− θ(−R)). (89)Thus we ne
essarily need to modify the de�nition of the momentum in the one-dimensional 
ase totake into a

ount the phase 
hange (89). This approa
h is taken in [7℄ using the following notion ofuntwisted momentum.De�nition 7.4. For u ∈ φ+H1(R), we de�ne the operator L on φ+H1(R) by
L(u) = lim

R→∞

(
1

2

∫ R

−R

〈〈iu′, u〉〉dx +
1

2
(arg u(R)− argu(−R))

) mod π (90)26



In [7℄ it is proved that the limit in (90) a
tually exists. Therefore, as in the higher dimensional
ase, we de�ne the generalized momentum in dimension one as
q1(u) = L(u).The following result shows that this de�nition gives us an analogous expression to (88).Lemma 7.5 ([7℄). Let u = φ+ w, w ∈ H1(R). Then

q1(u) = L(φ) + 1

2

∫

R

〈〈iw′, w〉〉 dx +

∫

R

〈〈iφ′, w〉〉 dx.Now that we have explained the notion of generalized momentum in any dimension, we 
anpro
eed to prove Theorem 1.8.Proof of Theorem 1.8. In view of the 
ontinuous dependen
e of the �ow, Lemma 7.5, (88) andProposition 1.7, we only need to prove the 
onservation of momentum for u0 = φ + w0, with
w0 ∈ H2(RN ). Thus we assume that u − φ = w ∈ C(R, H2(RN )) ∩ C1(R, L2(RN )). Integrating byparts we have that for any j = 1, . . . , N and t ∈ R,

∂tqj(u(t)) = ∂t

(
1

2

∫

RN

〈〈i∂jw(t), w(t)〉〉 dx+

∫

RN

〈〈i∂jφ,w(t)〉〉 dx
)

=

∫

RN

〈〈i∂j(w(t) + φ), ∂tw(t)〉〉 dx

=

∫

RN

〈〈i∂ju(t), ∂tu(t)〉〉 dx

=

∫

RN

〈〈∂ju(t),∆u(t) + u(t)(W ∗ (1− |u(t)|2))〉〉 dx.Sin
e |∇u(t)|2 ∈W 1,1(RN ), an integration by parts leads to
∂tqj(u(t)) = −1

2

∫

RN

∂j |∇u(t)|2 dx+

∫

RN

(W ∗ (1− |u(t)|2))〈〈u(t), ∂ju(t)〉〉 dx

=

∫

RN

(W ∗ (1− |u(t)|2))〈〈u(t), ∂ju(t)〉〉 dx.
(91)Now we noti
e that

∂j
(
(1− |u|2)(W ∗ (1− |u|2))

)
= −2〈〈u, ∂ju〉〉(W ∗ (1− |u|2))− 2(1− |u|2)(W ∗ 〈〈u, ∂ju〉〉). (92)From (92) and Lemma 3.4, we have

∫

RN

〈〈u, ∂ju〉〉(W ∗ (1 − |u|2)) dx =

∫

RN

(1− |u|2)(W ∗ 〈〈u, ∂ju〉〉) dx. (93)Sin
e ((1− |u(t)|2)(W ∗ (1− |u(t)|2))
)
∈ W 1,1(RN ), from (91), (92) and (93) we infer that

∂tqj(u(t)) = −1

4

∫

RN

∂j
(
(W ∗ (1 − |u(t)|2))(1 − |u(t)|2)

)
dx = 0,
on
luding the proof.Remark 7.6. This argument also proves the 
onservation of momentum stated in Theorem 1.10.27



7.2 The massIn a re
ent arti
le, Béthuel et al. [6℄ give a de�nition for the mass for the lo
al Gross-Pitaevskiiequation in the one-dimensional 
ase. In this subse
tion we try to extend this notion to higherdimensions.Let χ ∈ C∞
0 (R;R) be a fun
tion su
h that χ(x) = 1 if |x| ≤ 1, χ(x) = 0 if |x| ≥ 2 and

‖χ′‖L∞ , ‖χ′′‖L∞ ≤ 2. For any R > 0, a ∈ RN , we set
χa,R(x) = χ

( |x− a|
R

)
, x ∈ R

Nand the quantities
m+(u) = inf

a∈RN
lim sup
R→∞

∫

RN

(1− |u|2)χa,R dx, m−(u) = sup
a∈RN

lim inf
R→∞

∫

RN

(1− |u|2)χa,R dx.In the 
ase that 1 − |u|2 ∈ L1(RN ), m+(u) = m−(u). More generally, if u is su
h that m+(u) =
m−(u), we de�ne the generalized mass as

m(u) ≡ m+(u) = m−(u).The following result is a more a

urate version of Theorem 1.9 and shows that the generalizedmass is 
onserved if N ≤ 4. However, we need a faster de
ay for φ in dimensions three and four,whi
h is at least satis�ed by the travelling waves in the lo
al problem (see [21℄).Theorem 7.7. Let 1 ≤ N ≤ 4. In addition to (10), assume that ∇φ ∈ L
N

N−1 (RN ) if N = 3, 4.Suppose that u0 ∈ φ + H1(RN ) with m+(u0) (respe
tively m−(u0)) �nite. Then the asso
iatedsolution of (NGP) given by Theorem 1.2 satis�es m+(u(t)) = m+(u0) (respe
tively m−(u(t)) =
m−(u0)), for any t ∈ R. In parti
ular, if u0 has �nite generalized mass, then the generalized massis 
onserved by the �ow, that is m(u(t)) = m(u0), for any t ∈ R.Proof. Let u0 = φ + w0 and u = φ + w, w0 ∈ H1(RN ), w ∈ C(R, H1(RN )) ∩ C1(R, H−1(RN )).We take a sequen
e w0,n ∈ H2(RN ) su
h that w0,n → w0 in H1(RN ). By Proposition 1.7 and the
ontinuous dependen
e property of Theorem 1.2, the solutions un = φ + wn of (NGP) with initialdata φ+ w0,n satisfy

wn ∈ C(R, H2(RN )) ∩ C1(R, L2(RN )) and wn → w in C(I,H1(RN )), (94)for any bounded 
losed interval I.Setting η(t) = 1 − |u(t)|2, ηn(t) = 1 − |un(t)|2 and using that the fun
tions un are solution of(NGP), it follows
∂tηn(t) = −2Re(iun(t)∆un(t)).Then integrating by parts

∂t

(∫

RN

ηn(t)χa,R dx

)
=

∫

RN

∂tηn(t)χa,R dx = I1(t) + I2(t) + I3, (95)with
I1(t) = −2 Im

∫

RN

(wn(t)∇wn(t) + wn(t)∇φ)∇χa,R dx,

I2(t) = −2 Im

∫

RN

φ∇wn(t)∇χa,R dx,

I3 = −2 Im

∫

RN

φ∇φ∇χa,R dx.28



Noti
ing that ‖∆χa,R‖L2 ≤ CR
N−4

2 , we have that ‖∇χa,R‖L∞ and ‖∆χa,R‖L2 are uniformlybounded in a and R. Setting
Ωa,R = {x ∈ R

N : R < |x− a| < 2R}and using the Cau
hy-S
hwarz inequality we have
|I1(t)| ≤ C(φ)‖wn(t)‖L2(Ωa,R)(‖∇wn(t)‖L2(Ωa,R) + 1). (96)For I2, we �rst integrate by parts
I2(t) = 2 Im

∫

RN

wn(t)(∇φ∇χa,R + φ∆χa,R) dx,thus
|I2(t)| ≤ C(φ)‖wn(t)‖L2(Ωa,R). (97)Using Hölder inequality, it follows that

|I3| ≤
{
‖φ‖L∞‖∇φ‖L2(Ωa,R)‖∇χa,R‖L2 , if N = 1

‖φ‖L∞‖∇φ‖
L

N
N−1 (Ωa,R)

‖∇χa,R‖
L

N , if 2 ≤ N ≤ 4.
(98)Note that the 
hoi
e of χ implies that ‖∇χa,R‖LN is uniformly bounded in a and R in any dimension,and so is ‖∇χa,R‖L2 in dimension one. Then by putting together (95)-(98), we obtain

∣∣∣∣∂t
(∫

RN

ηn(t)χa,Rdx

)∣∣∣∣ ≤ C(φ)(‖wn(t)‖L2(Ωa,R)(1 + ‖∇wn(t)‖L2) + ‖∇φ‖LN∗(Ωa,R)),with N∗ = 2 if N = 1 and N∗ = N
N−1 if 2 ≤ N ≤ 4. Integrating this inequality between 0 and tand, by (94), passing to the limit we have

∣∣∣∣
∫

RN

η(t)χa,R dx−
∫

RN

η(0)χa,R dx

∣∣∣∣ ≤

C(φ)

∫ |t|

0

‖w(s)‖L2(Ωa,R)(1 + ‖∇w(s)‖L2) ds+ C(φ)|t|‖∇φ‖LN∗ (Ωa,R). (99)From the proof of Theorem 1.2, we dedu
e that for some 
onstant K, depending only on w0, E0, φand W,
‖w(t)‖L2 ≤ KeK|t|, ‖∇w(t)‖L2 ≤ KeK|t|. (100)Then, by Cau
hy-S
hwarz inequality,

∫ |t|

0

‖w(s)‖L2(Ωa,R)(1 + ‖∇w(s)‖L2) ds ≤KeK|t|

∫ |t|

0

‖w(s)‖L2(Ωa,R) ds

≤KeK|t||t| 12
(∫ |t|

0

∫

Ωa,R

|w(s)|2 dx ds
) 1

2

.This inequality together with (100), the dominated 
onvergen
e theorem and (99) imply that
lim

R→∞

(∫

RN

(1− |u(t)|2)χa,R dx−
∫

RN

(1− |u0|2)χa,R dx

)
= 0.The 
on
lusion follows from the de�nition of m+, m− and m.29



An interesting open question is to extend the statement of Theorem 1.9 to a more meaningfulnotion of mass su
h as
m

+(u) = inf
a∈R

lim sup
R→∞

∫

B(a,R)

(1− |u|2) dx, m
−(u) = sup

a∈R

lim inf
R→∞

∫

B(a,R)

(1− |u|2) dx.In fa
t, in the one-dimensional 
ase, one 
an 
hoose a test fun
tion χ su
h that
‖χa,R‖L2(supp(∇χa,R))is uniformly bounded in a and R. Then one 
an see that Theorem 1.9 remains true repla
ing m by

m, re
overing a result of Béthuel et al. (see Appendix in [6℄). However, in higher dimensions we donot know if this is possible.Referen
es[1℄ A. Aftalion, X. Blan
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