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Global well-posedness for a nonloal Gross-Pitaevskiiequation with non-zero ondition at in�nityAndré de LaireUPMC Univ Paris 06, UMR 7598Laboratoire Jaques-Louis Lions, F-75005, Paris, Franedelaire�ann.jussieu.frAbstratWe study the Gross-Pitaevskii equation involving a nonloal interation potential. Our aim isto give su�ient onditions that over a variety of nonloal interations suh that the assoiatedCauhy problem is globally well-posed with non-zero boundary ondition at in�nity, in any di-mension. We fous on even potentials that are positive de�nite or positive tempered distributions.Keywords Nonloal Shrödinger equation; Gross-Pitaevskii equation; Global well-posedness;Initial value problem.Mathematis Subjet Classi�ation 35Q55; 35A05; 37K05; 35Q40; 81Q99.1 Introdution1.1 The problemIn order to desribe the kineti of a weakly interating Bose gas of bosons of mass m, Gross [22℄and Pitaevskii [33℄ derived in the Hartree approximation, that the wavefuntion Ψ governing theondensate satis�es
i~∂tΨ(x, t) = − ~2

2m
∆Ψ(x, t) + Ψ(x, t)

∫

RN

|Ψ(y, t)|2V (x − y) dy, on R
N × R, (1)where N is the spae dimension and V desribes the interation between bosons. In the mosttypial �rst approximation, V is onsidered as a Dira delta funtion, whih leads to the standardloal Gross-Pitaevskii equation. This loal model with non-vanishing ondition at in�nity has beenintensively used, due to its appliation in various areas of physis, suh as super�uidity, nonlinearoptis and Bose-Einstein ondensation [26, 25, 28, 11℄. It seems then natural to analyze the equation(1) for more general interations. Indeed, in the study of super�uidity, supersolids and Bose-Einsteinondensation, di�erent types of nonloal potentials have been proposed [4, 13, 36, 34, 27, 1, 38, 12, 9℄.To obtain a dimensionless equation, we take the average energy level per unit mass E0 of a boson,and we set

ψ(x, t) = exp

(
imE0t

~

)
Ψ(x, t).Then (1) turns into

i~∂tψ(x, t) = − ~2

2m
∆ψ(x, t) −mE0ψ(x, t) + ψ(x, t)

∫

RN

|ψ(y, t)|2V (x− y) dy. (2)1



De�ning the resaling
u(x, t) =

1

λ
√
mE0

(
~√

2m2E0

)N
2

ψ

(
~x√
2m2E0

,
~t

mE0

)
,from (2) we dedue that

i∂tu(x, t) + ∆u(x, t) + u(x, t)

(
1− λ2

∫

RN

|u(y, t)|2V(x− y) dy

)
= 0,with

V(x) = V

(
~x√
2m2E0

)
.If we assume that the onvolution between V and a onstant is well-de�ned and equal to a positiveonstant, hoosing λ2 = (V ∗ 1)−1, equation (2) is equivalent to

i∂tu+∆u+ λ2u(V ∗ (1 − |u|2)) = 0 on R
N × R. (3)More generally, we onsider the Cauhy problem for the nonloal Gross-Pitaevskii equation withnon-zero initial ondition at in�nity in the form

{
i∂tu+∆u+ u(W ∗ (1− |u|2)) = 0 on R

N × R,

u(0) = u0,
(NGP)where

|u0(x)| → 1, as |x| → ∞. (4)If W is a real-valued even distribution, (NGP) is a Hamiltonian equation whose energy given by
E(u(t)) =

1

2

∫

RN

|∇u(t)|2 dx+
1

4

∫

RN

(W ∗ (1 − |u(t)|2))(1 − |u(t)|2) dxis formally onserved.In the ase that W is the Dira delta funtion, (NGP) orresponds to the loal Gross-Pitaevskiiequation and the Cauhy problem in this instane has been studied by Béthuel and Saut [8℄, Gérard[19℄, Gallo [17℄, among others. As mentioned before, in a more general framework the interationkernel W ould be nonloal. For example, Shhesnovih and Kraenkel in [36℄ onsider for ε > 0,
Wε(x) =





1

2πε2|x|K0

( |x|
ε

)
, N = 2,

1

4πε2|x| exp
(
−|x|
ε

)
, N = 3,

(5)where K0 is the modi�ed Bessel funtion of seond kind (also alled Madonald funtion). In thisway Wε might be onsidered as an approximation of the Dira delta funtion, sine Wε → δ, as
ε→ 0, in a distributional sense. Others interesting nonloal interations are the soft ore potential

W (x) =

{
1, if |x| < a,

0, otherwise, (6)with a > 0, whih is used in [27, 1℄ to the study of supersolids, and also
W = α1δ + α2K, α1, α2 ∈ R, (7)where K is the singular kernel

K(x) =
x21 + x22 − 2x23

|x|5 , x ∈ R
3\{0}. (8)The potential (7)-(8) models dipolar fores in a quantum gas (see [9℄, [38℄).2



1.2 Main resultsIn order to inlude interations suh as (7)-(8), it is appropriate to work in the spae Mp,q(R
N ),that is the set of tempered distributions W suh that the linear operator f 7→ W ∗ f is boundedfrom Lp(RN ) to Lq(RN ). We denote by ‖W‖p,q its norm. We will suppose that there exist

p1, p2, p3, p4, q1, q2, q3, q4, s1, s2 ∈ [1,∞),with
N

N − 2
> p4,

2N

N − 2
> p2, p3, s1, s2 ≥ 2, 2 ≥ q1 >

2N

N + 2
, q3, q4 >

N

2
if N ≥ 3and

p2, p3, s1, s2 ≥ 2, 2 ≥ q1 > 1 if 2 ≥ N ≥ 1,suh that 



W ∈ M2,2(R
N ) ∩

4⋂

i=1

Mpi,qi(R
N ),

1

p3
+

1

q2
=

1

q1
,

1

p1
− 1

p3
=

1

s1
,

1

q1
− 1

q3
=

1

s2
if N ≥ 3.

(WN )We reall that if p > q, then Mp,q = {0}. Therefore if we suppose that W is not zero, the numbersabove have to satisfy q2, q3 ≥ 2. In addition, the existene of s1, s2 and the relations in (WN ) implythat
N

N − 2
> p1, q2 >

N

2
,

1

p1
− 1

p3
∈
(
N − 2

2N
,
1

2

]
,

1

q1
− 1

q3
∈
(
N − 2

2N
,
1

2

] if N ≥ 3.Figure 1 shematially shows the loation of these numbers in the unit square.

Figure 1: For N > 4, the piture on the left represents the (1/p, 1/q)-plane, in the sense that
(1/p1, 1/q1) ∈ R1, (1/p2, 1/q2), (1/p3, 1/q3) ∈ R2, (1/p4, 1/q4) ∈ R3. In the piture on the right, theshaded areas symbolize that (1/q1, 1/q3) ∈ R4 and (1/p1, 1/p3) ∈ R5, for N > 6.To hek the hypothesis (WN ) it is onvenient to use some properties of the spaes Mp,q(R

N ).For instane, for any 1 < p ≤ q <∞, Mp,q(R
N ) = Mq′,p′(RN ) and for any 1 ≤ p ≤ 2, M1,1(R

N ) ⊆
Mp,p(R

N ) ⊆ M2,2(R
N ) ([20℄). In Proposition 1.3 we give more expliit onditions to ensure (WN ).3



As remarked before, the energy is formally onserved if W is a real-valued even distribution. Wereall that a real-valued distribution is said to be even if
〈W,φ〉 = 〈W, φ̃〉, ∀φ ∈ C∞

0 (RN ;R),where φ̃(x) = φ(−x). However, the onservation of energy is not su�ient to study the long timebehavior of the Cauhy problem, beause the potential energy is not neessarily nonnegative andthe nonloal nature of the problem prevents us to obtain pointwise bounds. We are able to ontrolthis term assuming further that W is a positive distribution or supposing that it is a positive de�nitedistribution. More preisely, we say that W is a positive distribution if
〈W,φ〉 ≥ 0, ∀φ ≥ 0, φ ∈ C∞

0 (RN ;R),and that it is a positive de�nite distribution if
〈W,φ ∗ φ̃〉 ≥ 0, φ ∈ C∞

0 (RN ;R). (9)These type of distributions frequently arise in the physial models (see Subsetion 1.3). In parti-ular, the real-valued even positive de�nite distributions inlude a large variety of models where theinteration between partiles is symmetri. In Setion 2 we state further properties of this kind ofpotentials.As Gallo in [17℄, we onsider the initial data u0 for the problem (NGP) belonging to the spae
φ+H1(RN ), with φ a funtion of �nite energy. More preisely, from now on we assume that φ is aomplex-valued funtion that satis�es

φ ∈ W 1,∞(RN ), ∇φ ∈ H2(RN ) ∩ C(Bc), |φ|2 − 1 ∈ L2(RN ), (10)where Bc denotes the omplement of some ball B ⊆ RN , so that in partiular φ satis�es (4).Remark 1.1. We do not suppose that φ has a limit at in�nity. In dimensions N = 1, 2 a funtionsatisfying (10) ould have ompliated osillations, suh as (see [19, 18℄)
φ(x) = exp(i(ln(2 + |x|)) 1

4 ), x ∈ R
2.We note that any funtion verifying (10) belongs to the Homogeneous Sobolev spae

Ḣ1(RN ) = {ψ ∈ L2
loc(R

N ) : ∇ψ ∈ L2(RN )}.In partiular, if N ≥ 3 there exists z0 ∈ C with |z0| = 1 suh that φ − z0 ∈ L
2N

N−2 (RN ) (see e.g.Theorem 4.5.9 in [24℄). Choosing α ∈ R suh that z0 = eiα and sine the equation (NGP) is invariantby a phase hange, one an assume that φ− 1 ∈ L
2N

N−2 (RN ), but we do not use expliitly this deayin order to handle at the same time the two-dimensional ase.Our main result onerning the global well-posedness for the Cauhy problem is the following.Theorem 1.2. Let W be a real-valued even distribution satisfying (WN ).
(i) Assume that one of the following is veri�ed

(a) N ≥ 2 and W is a positive de�nite distribution.
(b) N ≥ 1, W ∈ M1,1(R

N ) and W is a positive distribution.Then the Cauhy problem (NGP) is globally well-posed in φ + H1(RN ). More preisely, forevery w0 ∈ H1(RN ) there exists a unique w ∈ C(R, H1(RN )), for whih φ + w solves (NGP)with the initial ondition u0 = φ + w0 and for any bounded losed interval I ⊂ R, the �owmap w0 ∈ H1(RN ) 7→ w ∈ C(I,H1(RN )) is ontinuous. Furthermore, w ∈ C1(R, H−1(RN ))and the energy is onserved
E0 := E(φ+ w0) = E(φ+ w(t)), ∀t ∈ R. (11)4



(ii) Assume that there exists σ > 0 suh that
ess inf Ŵ ≥ σ. (12)Then (NGP) is globally well-posed in φ+H1(RN ), for all N ≥ 1 and (11) holds. Moreover, if

u is the solution assoiated to the initial data u0 ∈ φ+H1(RN ), we have the growth estimate
‖u(t)− φ‖L2 ≤ C|t|+ ‖u0 − φ‖L2 , (13)for any t ∈ R, where C is a positive onstant that depends only on E0, W, φ and σ.We make now some remarks about Theorem 1.2.

• The ondition (WN ) implies that W ∈ M2,2(R
N ), so that Ŵ ∈ L∞(RN ) and therefore theondition (12) makes sense.

• In ontrast with (13), as we prove in Setion 5, the growth estimate for the solution given byTheorem 1.2-(i) is only exponential
‖u(t)− φ‖L2 ≤ C1e

C2|t|(1 + ‖u0 − φ‖L2), t ∈ R,for some onstants C1, C2 only depending on E0, W and φ.
• Aordingly to Remark 1.1 and the Sobolev embedding theorem, after a phase hange indepen-dent of t, the solution u of (NGP) given by Theorem 1.2 also satis�es that u− 1 ∈ L

2N
N−2 (RN )if N ≥ 3.

• In dimensions 1 ≤ N ≤ 3 we an hoose (p4, q4) = (2, 2) in (WN ). Consequently, the onditionthat W ∈ Mp4,q4(R
N ) is nontrivial only when N ≥ 4.At �rst sight, it is not obvious to hek the hypotheses on W . The purpose of the next result isto give su�ient onditions to ensure (WN ).Proposition 1.3.

(i) Let 1 ≤ N ≤ 3. If W ∈ M2,2(R
N ) ∩ M3,3(R

N ), then W ful�ls (WN ). Furthermore, if Wveri�es (WN ) with pi = qi, 1 ≤ i ≤ 3, then W ∈ M2,2(R
N ) ∩M3,3(R

N ).
(ii) Let N ≥ 4. Assume that W ∈ Mr,r(R

N ) for every 1 < r <∞. Also suppose that there exists
r̄ > N

4 suh that W ∈ Mp,q(R
N ), for every 1 − 1

r̄ < 1
p < 1 with 1

q = 1
p + 1

r̄ − 1. Then Wsatis�es (WN ).We onlude from Proposition 1.3 that the Dira delta funtion veri�es (WN ) in dimensions
1 ≤ N ≤ 3. Sine δ̂ = 1, Theorem 1.2-(ii) reovers the results of global existene for the loalGross-Pitaevskii equation in [8, 19, 17℄ and the growth estimate proved in [2℄. In addition, if thepotential onverges to the Dira delta funtion, the orrespondent solutions onverge to the solutionof the loal problem as a onsequene of the following result.Proposition 1.4. Assume that 1 ≤ N ≤ 3. Let (Wn)n∈N be a sequene of real-valued distributionsin M2,2(R

N ) ∩M3,3(R
N ) suh that un is the global solution of (NGP) given by Theorem 1.2, with

Wn instead of W, for some initial data in φ+H1(RN ), and
lim
n→∞

Wn =W∞, in M2,2(R
N ) ∩M3,3(R

N ), (14)with ‖W∞‖M2,2∩M3,3 > 0 (‖·‖M2,2∩M3,3 := max{‖·‖M2,2, ‖·‖M3,3}). Then un → u in C(I,H1(RN )),for any bounded losed interval I ⊂ R, where u is the solution of (NGP) with W = W∞ and thesame initial data. 5



On the other hand, the Dira delta funtion does not satisfy (WN ) if N ≥ 4 and thereforeTheorem 1.2 annot be applied. In fat, to our knowledge there is no proof for the global well-posedness to the loal Gross-Pitaevskii equation in dimension N ≥ 4 with arbitrary initial ondition.For small initial data, Gustafson et al. [23℄ proved global well-posedness in dimensions N ≥ 4 aswell as Gérard [19℄ in the four-dimensional energy spae.As a onsequene of Theorem 1.2 and Proposition 1.3 we derive the next result for integrablekernels.Corollary 1.5. Let W be a real-valued even funtion suh that W ∈ L1(RN ) if 1 ≤ N ≤ 3 and
W ∈ L1(RN ) ∩ Lr(RN ), for some r > N

4 , if N ≥ 4. Assume also that W is positive de�niteif N ≥ 2, or that it is nonnegative. Then the Cauhy problem (NGP) is globally well-posed in
φ+H1(RN ).As Gallo remarks in [17℄, the well-posedness in a spae suh as φ +H1(RN ) makes possible tohandle the problem with initial data in the energy spae

E(RN ) = {u ∈ H1lo(RN ) : ∇u ∈ L2(RN ), 1− |u|2 ∈ L2(RN )},equipped with the distane
d(u, v) = ‖u− v‖X1+H1 + ‖|u|2 − |v|2‖L2. (15)Here X1(RN ) denotes the Zhidkov spae
X1(RN ) = {u ∈ L∞(RN ) : ∇u ∈ L2(RN )}.We reall that u ∈ C(R, E(RN )) is alled a mild solution of (NGP) if it satis�es the Duhamel formula

u(t) = eit∆u0 + i

∫ t

0

ei(t−s)∆(u(s)(W ∗ (1− |u(s)|2)) ds, t ∈ R.We note that by Lemma 6.3 the integral in the r.h.s is atually �nite (see [19, 18℄ for further resultsabout the ation of Shrödinger semigroup on E(RN )). With the same arguments of [17℄, we mayalso handle the problem with initial data in the energy spae. Moreover, in the ase 1 ≤ N ≤ 4,we prove that a solution in the energy spae with initial ondition u0 ∈ E(RN ), neessarily belongsto u0 +H1(RN ), whih is a proper subset of E(RN ). This also gives the uniqueness in the energyspae for 1 ≤ N ≤ 4, as follows.Theorem 1.6. Let W be as in Theorem 1.2. Then for any u0 ∈ E(RN ), there exists a unique
w ∈ C(R, H1(RN )) suh that u := u0 + w solves (NGP). Furthermore, if 1 ≤ N ≤ 4 and v ∈
C(R, E(RN )) is a mild solution of (NGP) with v(0) = u0, then v = u.The next proposition shows that the hypotheses made on the potential W also ensure the H2-regularity of the solutions.Proposition 1.7. Let W be as in Theorem 1.2 and u be the global solution of (NGP) for someinitial data u0 ∈ φ+H2(RN ). Then u− φ ∈ C(R, H2(RN )) ∩ C1(R, L2(RN )).Finally, we study the onservation of momentum and mass for (NGP). As has been disussed inseveral works (see [5, 7, 32, 6℄) the lassial onepts of momentum and mass, that is

p(u) =

∫

RN

〈〈i∇u, u〉〉 dx and M(u) =

∫

RN

(1− |u|2) dx,with 〈〈z1, z2〉〉 = Re(z1z2), are not well-de�ned for u ∈ φ+H1(RN ). Thus it is neessary to give somegeneralized sense to these quantities. In Setion 7 we will explain in detail a notion of generalizedmomentum and generalized mass suh that we have the next results on onservation laws.6



Theorem 1.8. Let N ≥ 1 and u0 ∈ φ+H1(RN ). Then the generalized momentum is onserved bythe �ow of the assoiated solution u of (NGP) given by Theorem 1.2.Theorem 1.9. Let 1 ≤ N ≤ 4. In addition to (10), assume that ∇φ ∈ L
N

N−1 (RN ) if N = 3, 4.Suppose that u0 ∈ φ + H1(RN ) has �nite generalized mass. Then the generalized mass of theassoiated solution of (NGP) given by Theorem 1.2 is onserved by the �ow.1.3 Examples(i) Given the spherially symmetri interation of bosons, it is usual to suppose that W is radial,that isW (x−y) = R(|x−y|), with R : [0,∞) → R. Using the fat that the Fourier transform ofa radial funtion is also radial, we may write Ŵ (ξ) = ρ(|ξ|), for some funtion ρ : [0,∞) → R.Notiing that δ̂ = 1, a next order of approximation would be to onsider (see e.g. [36℄)
ρ(r) =

1

1 + ε2r2
, ε > 0.Then the Fourier inversion theorem implies that W is given by (5) for N = 2, 3. By Proposi-tion 2.2, (5) is indeed a positive de�nite funtion, sine ρ is nonnegative. For this potential wealso have that K0(x) ≈ ln

(
2
x

) as x → 0, and K0(x) ≈
√

π
2x exp(−x) as x → ∞ (see e.g. [31℄,p. 136), hene W ∈ L1(RN ) for N = 2, 3. Therefore it is possible to invoke Corollary 1.5.(ii) By Lemma 2.3, the funtion given by (6) annot be positive de�nite, sine it is bounded andit does not oinide with any ontinuous funtion a.e. However, W is a nonnegative funtionthat belongs to L1(RN )∩L∞(RN ). Therefore Corollary 1.5 an be applied in any dimension.(iii) We reall that if Ω is an even funtion, smooth away from the origin, homogeneous of degreezero, with zero mean-value on the sphere

∫

SN−1

Ω(σ) dσ = 0,then
K(x) =

Ω(x)

|x|N , x ∈ R
N\{0},de�nes a tempered distribution K in the sense of prinipal value, that oinides with K awayfrom the origin. Moreover, for any f ∈ S(RN ), x ∈ RN ,

(K ∗ f)(x) = p.v. ∫
RN

K(y)f(x− y) dy = lim
ε→0

∫

1

ε>|y|>ε

Ω(y)

|y|N f(x− y) dy, (16)
K ∈ Mp,p(R

N ) for every 1 < p <∞, and the Fourier transform of K belongs to L∞(RN ) (f.[37℄). Therefore
W = α1δ + α2K (17)is a positive de�nite distribution if α1 is large enough and then Theorem 1.2-(ii) gives a globalsolution of (NGP) in any dimension. For instane, we may onsider in dimension three thefuntion K given by (8). Sine (see [9℄)

K̂(ξ) =
4π

3

(
3ξ23
|ξ|2 − 1

)
, ξ ∈ R

3\{0},(17) is positive de�nite by Proposition 2.2 if
α1 ≥ 4π

3
α2 ≥ 0 or α1 ≥ −8π

3
α2 ≥ 0. (18)Therefore, if (18) is veri�ed we may apply Theorem 1.2-(i)-(a). Moreover, if the inequalitiesin (18) are strit, we have also the growth estimate of Theorem 1.2-(ii).7



(iv) Let us reall that to pass from the original equation (1) to (3) (and hene to (NGP)) we onlyneed the onstant V ∗ 1 be positive. If we take V as the potential given in the examples (i) or(ii), then V ∈ L1(RN ) and
V ∗ 1 =

∫

RN

V (x) dx > 0.Therefore Theorem 1.2 also provides the global well-posedness for the equation (1). If we wantto onsider V as in the example (iii), the meaning of K ∗ 1 is not obvious. However, (16) stillmakes sense if f ≡ 1. In fat, using (16),
(K ∗ 1)(x) = lim

ε→0

∫ ε−1

ε

∫

S2

Ω(σ)

r3
r2 dσ dr = 0.Then if V is given by (17), V ∗ 1 = α1 and we have the same onlusion as before, providedthat α1 > 0.One of the �rst works that introdues the nonloal interation in the Gross-Pitaevskii equationwas made by Pomeau and Ria in [34℄ onsidering the potential (6). Their main purpose was toestablish a model for super�uids with rotons. In fat, the Landau theory of super�uidity of HeliumII says that the dispersion urve must exhibit a roton minimum (see [30, 16℄) as was orroboratedlater by experimental observations ([14℄). Although the model onsidered in [34℄ has a good �t withthe roton minimum, it does not provide a orret sound speed. For this reason Berlo� in [3℄ proposesthe potential

W (x) = (α+ βA2|x|2 + γA4|x|4) exp(−A2|x|2), x ∈ R
3, (19)where the parameters A, α, β and γ are hosen suh that the above requirements are satis�ed.However, the existene of this roton minimum implies that Ŵ must be negative in some interval.In addition, a numerial simulation in [3℄ shows that in this ase the solution exhibits nonphysialmass onentration phenomenon, for ertain initial onditions in φ +H1(R3). At some point, ourresults are in agreement with these observations in the sense that Theorem 1.2 annot be appliedto the potential (19), beause Ŵ and W are negative in some interval. However, by Proposition 1.3we may use the following loal well-posedness resultTheorem 1.10. Let W be a distribution satisfying (WN ). Then the Cauhy problem (NGP) isloally well-posed in φ + H1(RN ). More preisely, for every w0 ∈ H1(RN ) there exists T > 0suh that there is a unique w ∈ C([−T, T ], H1(RN )), for whih φ + w solves (NGP) with theinitial ondition u0 = φ + w0. In addition, w is de�ned on a maximal time interval (−Tmin, Tmax)where w ∈ C1((−Tmin, Tmax), H

−1(RN )) and the blow-up alternative holds: ‖w(t)‖H1(RN ) → ∞, as
t → Tmax if Tmax < ∞ and ‖w(t)‖H1(RN ) → ∞, as t → Tmin if Tmin < ∞. Furthermore, supposingthat W is a real-valued even distribution, for any bounded losed interval I ⊂ (−Tmin, Tmax) the�ow map w0 ∈ H1(RN ) 7→ w ∈ C(I,H1(RN )) is ontinuous and the energy and the generalizedmomentum are onserved on (−Tmin, Tmax).It is an open question to establish whih are the exat impliations of hange of sign of theFourier transform of the potential for the global existene of the solutions of (NGP). As proposedin [4℄, a way to handle this problem would be to add a higher-order nonlinear term in (1) to avoidthe mass onentration phenomenon, maintaining the orret phonon-roton dispersion urve.This paper is organized as follows. In the next setion we give several results about positivede�nite and positive distributions. In Setion 3 we establish some onvolution inequalities thatinvolve the hypothesis (WN ) and we give the proof of Corollary 1.5. We prove the loal well-posedness in Setion 4 and also Propositions 1.4 and 1.7. Theorem 1.2 is ompleted in Setion 5.In Setion 6 we brie�y reall the arguments that lead to Theorem 1.6 and in Setion 7 we study theonservation of momentum and mass. 8



2 Positive de�nite and positive distributionsThe purpose of this setion is to reall some lassial results for positive de�nite and positivedistributions, in the ontext of Theorem 1.2. We also state some properties that we do not use in thenext setions, but are useful to better understand the type of potentials onsidered in Theorem 1.2.L. Shwartz in [35℄ de�nes that a (omplex-valued) distribution T is positive de�nite if
〈T, φ ∗ φ̆〉 ≥ 0, ∀φ ∈ C∞

0 (RN ;C), (20)with φ̆(x) = φ(−x). In virtue of our hypothesis on W, we have preferred to adopt the simplerde�nition (9). The relation between these two possible de�nitions is given in the following lemma.Lemma 2.1. Let T be a real-valued distribution.
(i) If T is positive de�nite (in the sense of (9)) and even, then T ful�ls (20).
(ii) If T veri�es (20), then T is even.In partiular, an even real-valued distribution is positive de�nite (in the sense of (9)) if and only ifit satis�es (20).Proof. Suppose that T is positive de�nite in the sense of (9). Let φ ∈ C∞

0 (RN ;C), with φ = φ1+iφ2,
φ1, φ2 ∈ C∞

0 (RN ;R). Then
〈T, φ ∗ φ̆〉 = 〈T, φ1 ∗ φ̃1〉+ 〈T, φ̃2 ∗ φ2〉+ i〈T, φ̃1 ∗ φ2〉 − i〈T, φ1 ∗ φ̃2〉. (21)Sine W is even,

〈T, φ̃1 ∗ φ2〉 = 〈T, φ1 ∗ φ̃2〉.Therefore the imaginary part in the r.h.s. of (21) is zero. The real part is positive beause T ispositive de�nite, whih implies that T veri�es (20).For the proof of (ii), see [35℄.The next result haraterizes the positive de�nite distributions under the hypotheses of Theo-rem 1.2. In partiular, it gives a simple way to hek the positive de�niteness in terms of the Fouriertransform.Proposition 2.2. Let W ∈ M2,2(R
N ) be an even real-valued distribution. The following assertionsare equivalent

(i) W is a positive de�nite distribution.
(ii) Ŵ ∈ L∞(RN ) and Ŵ (ξ) ≥ 0 for almost every ξ ∈ RN .
(iii) For every f ∈ L2(RN ;R), ∫

RN

(W ∗ f)(x)f(x) dx ≥ 0.Proof. (i) ⇒ (ii). By Lemma 2.1, we may apply the so-alled Shwartz-Bohner Theorem (see [35℄,p. 276). Then there exists a positive measure µ ∈ S′(RN ) suh that Ŵ = µ. Sine W ∈ M2,2(R
N ),we have that Ŵ ∈ L∞(RN ), and therefore Ŵ is a nonnegative bounded funtion.9



(ii) ⇒ (iii). Sine W ∈ M2,2(R
N ), W ∗ f ∈ L2(RN ). From the fat that S(RN ) is dense in L2(RN ),we also have that

Ŵ ∗ f = Ŵ f̂ .Using that f is real-valued, by Parseval's theorem we �nally dedue
∫

RN

(W ∗ f)(x)f(x) dx = (2π)−N

∫

RN

Ŵ (ξ)|f̂(ξ)|2 dξ ≥ 0,where we have used that Ŵ ≥ 0 for the last inequality.(iii) ⇒ (i). This impliation diretly follows from the fat that C∞
0 (RN ;R) ⊂ L2(RN ;R).We remark that a positive de�nite distribution is not neessarily a positive distribution. Forinstane, we onsider the Laguerre-Gaussian funtions

Wm(x) = e−|x|2
m∑

k=0

(−1)k

k!

(
m+ N

2

m− k

)
|x|2k, x ∈ R

N , m ∈ N. (22)These funtions are negative in some subset of RN and sine Ŵm ≥ 0 (see e.g. [15℄, p. 38), Proposi-tion 2.2 shows that they are positive de�nite funtions. We also have thatWm ∈ L1(RN )∩L∞(RN ).Then Corollary 1.5 gives global existene of (NGP) for the potential (22) in any dimension N ≥ 2.In the ase that the onsidered distribution is atually a bounded funtion, its positive de�nitenessgives some regularity. In other diretion, the onept of positive de�niteness may be related to thesame onept used for matries. We reall some of these results in the next lemma.Lemma 2.3. Let W be an even real-valued positive de�nite distribution.
(i) If W ∈ L∞(RN ), then it oinides almost everywhere with a ontinuous funtion.
(ii) If W is ontinuous, then W (0) = ‖W‖L∞(RN ) and for all x1, . . . , xm ∈ RN , m ≥ 1, the matrixgiven by Ajk =W (xj − xk), j, k ∈ {1, . . . ,m}, is a positive semi-de�nite matrix.Proof. Taking into onsideration Lemma 2.1, these statements are proved in [35℄.The importane of the ondition (12) is that it gives the following oerivity property to thepotential energy.Lemma 2.4. Assume that W ∈ M2,2(R

N ) veri�es (12). Then for all f ∈ L2(RN ;R),
σ‖f‖2L2 ≤

∫

RN

(W ∗ f)(x)f(x) dx ≤ ‖W‖2,2‖f‖2L2. (23)Proof. The �rst inequality follows from Parseval's theorem,
∫

RN

(W ∗ f)(x)f(x) dx = (2π)−N

∫

RN

Ŵ (ξ)|f̂(ξ)|2 dξ ≥ σ‖f‖2L2.The seond inequality in (23) is immediate sine W ∈ M2,2(R
N ).The purpose of the last lemma in this setion is to establish some properties of the positivedistributions whih appear in Theorem 1.2. In partiular, we show that for these distributions(WN ) is automatially veri�ed if 1 ≤ N ≤ 3. 10



Lemma 2.5. Let W ∈ M1,1(R
N ) be a positive distribution. Then W ∈ Mp,p(R

N ), for any 1 ≤
p ≤ ∞ and W is a positive Borel measure of �nite mass. If 1 ≤ N ≤ 3 we also have that W satis�es(WN ).Proof. Sine W ∈ M1,1(R

N ), it is well known that W is a (omplex-valued) �nite Borel measure.Then W ∈ M∞,∞(RN ) and by interpolation W ∈ Mp,p(R
N ) for any 1 ≤ p ≤ ∞. Finally, the fatthat W is a positive distribution implies that it is a positive measure (f. [35℄). By Proposition 1.3we onlude that W satis�es (WN ), if 1 ≤ N ≤ 3.3 Some onsequenes of assumption (WN)We �rst establish some inequalities involving the onvolution with W that explain in part how thehypothesis (WN ) works. After that, we give the proof of Proposition 1.3 and Corollary 1.5.From now on we adopt the standard notation C(·, ·, . . . ) to represent a generi onstant thatdepends only on eah of its arguments, and possibly on some �xed numbers suh as the dimension.In the ase that W ∈ Mp,q(R

N ) we use C(W ) to denote a onstant that only depends on the norm
‖W‖p,q. We also use the notation p′ for the onjugate exponent of p given by 1/p+ 1/p′ = 1.Lemma 3.1. Let W ∈ Mp1,q1(R

N ) ∩Mp2,q2(R
N ) ∩Mp3,q3(R

N ), with
p1, p2, p3, q1, q2, q3 ≥ 1 and 1

p3
+

1

q2
=

1

q1
.Suppose that there are s1, s2 ≥ 1, suh that

1

p1
− 1

p3
=

1

s1
,

1

q1
− 1

q3
=

1

s2
.Then for any u, v ∈ S(RN)

‖(W ∗ u)v‖Lq1 ≤ ‖W‖p2,q2‖u‖Lp2‖v‖Lp3 ,

‖(W ∗ u)v‖Lq1 ≤ ‖W‖p3,q3‖u‖Lp3‖v‖Ls2 ,

‖W ∗ (uv)‖Lq1 ≤ ‖W‖p1,q1‖u‖Lp3‖v‖Ls1 .Proof. The proof is a diret onsequene of Hölder inequality and the hypotheses on W .Lemma 3.2. Assume that W satis�es (WN ) and that N ≥ 4. Then W ∈ M N
N−2

,2(R
N ), W ∈

M N
N−2

,N
2

(RN ) and W ∈ M2,N
2

(RN ).Proof. From the Riesz-Thorin interpolation theorem and the fat that ( 12 , 2
N

) and (N−2
N , 2

N

) belongto the onvex hull of {(
1

2
,
1

2

)
,

(
1

p1
,
1

q1

)
,

(
1

p3
,
1

q3

)
,

(
1

p4
,
1

q4

)}
,we onlude that W ∈ M2,N

2

(RN ) and W ∈ M N
N−2

,N
2

(RN ). Sine the onjugate exponent of N
N−2is N

2 , W ∈ M2,N
2

(RN ) implies that W ∈ M N
N−2

,2(R
N ).Lemma 3.3. Assume that W satis�es (WN ). Then for any u, v, w ∈ S(RN),

‖(W ∗ (uv))w‖Lγ̃ ≤ C(W )‖u‖Ls̃‖v‖Lr̃‖w‖Lr̃ , (24)for some 2 > γ̃ > 2N
N+2 , 2N

N−2 > r̃, s̃ > 2 if N ≥ 3, and 2 > γ̃ > 1, ∞ > r̃, s̃ > 2 if N = 1, 2.11



Proof. If N ≥ 4, by Lemma 3.2 we have that W ∈ M N
N−2

,N
2

(RN ). Sine also W ∈ Mp4,q4(R
N ),from the Riesz-Thorin interpolation theorem we dedue that there exist p̄ and q̄ suh that

W ∈ Mp̄,q̄(R
N ),

N

N − 1
< p̄ <

N

N − 2
,

N

2
< q̄ < N. (25)Now we set

1

r̃
= min

{
1

2

(
1− 1

q̄

)
,
1

2p̄

}
,
1

γ̃
=

1

q̄
+

1

r̄
,
1

s̃
=

1

p̄
− 1

r̃
.In view of (25), we have 2N

N+2 < γ̃ < 2 and 2 < r̃, s̃ < N−2
2N . By Hölder inequality, we onlude that

‖(W ∗ (uv))w‖Lγ̃ ≤ ‖W ∗ (uv)‖Lq̄‖w‖Lr̃

≤ ‖W‖p̄,q̄‖uv‖Lp̄‖w‖Lr̃

≤ ‖W‖p̄,q̄‖u‖Ls̃‖v‖Lr̃‖w‖Lr̃ .If N = 1, 2, 3, the proof is simpler. It is su�ient to take q̄ = 2, p̄ = 2, s̃ = r̃ = 4, γ̃ = 4
3 in the lastinequality to dedue (24).Lemma 3.4. Assume that W satis�es (WN ).

(i) For any u ∈ φ+H1(RN ) we have (W ∗ (1 − |u|2))(1 − |u|2) ∈ L1(RN )

(ii) If W is also an even real-valued distribution, then for any u ∈ φ+H1(RN ) and h ∈ H1(RN ),
∫

RN

(W ∗ 〈〈u, h〉〉)(1 − |u|2) dx =

∫

RN

(W ∗ (1− |u|2))〈〈u, h〉〉 dx. (26)Proof. Let u = φ + w, with w ∈ H1(RN ). If N ≥ 4, by (10) and the Sobolev embedding theorem,we dedue that
(1 − |φ|2 − 2〈〈φ,w〉〉 − |w|2) ∈ L2(RN ) + L

N
N−2 (RN ).By Lemma 3.2 we have that the map h 7→ W ∗ h is ontinuous from L2(RN ) + L

N
N−2 (RN ) to

L2(RN ) ∩ LN
2 (RN ) and sine N−2

N + 2
N = 1, by Hölder inequality we onlude that

(W ∗ (1− |φ|2 − 2〈〈φ,w〉〉 − |w|2))(1− |φ|2 − 2〈〈φ,w〉〉 − |w|2) ∈ L1(RN ). (27)If 1 ≤ N ≤ 3, (27) follows from the fat that |w|2 ∈ L2(RN ). This onludes the proof of (i).A similar argument shows that ‖(W ∗ 〈〈u, h〉〉)(1− |u|2)‖L1 <∞. Then using that W is even andFubini's theorem we obtain (ii).The previous lemmas will be useful in the next setions, in partiular to prove the loal well-posedness of (NGP). Now we give the proofs of Proposition 1.3 and Corollary 1.5, that involve somestraightforward omputations.Proof of Proposition 1.3. For the �rst part of (i), we note that the hypothesis implies that W ∈
Mp,p(R

N ) for any 3
2 ≤ p ≤ 3. Then it is su�ient to take p1 = q1 = 3

2 , p2 = p3 = q2 = q3 = 3and p4 = q4 = 2 to see that (WN ) is ful�lled. For the seond part of (i), we need prove that
W ∈ M3,3(R

N ). Realling that Mp,q(R
N ) = Mq′,p′(RN ) for 1 < p ≤ q < ∞ and using the Rieszinterpolation theorem, we have that W ∈ Ms,t(R

N ), for every (s−1, t−1) in the onvex hull of
{(

1

2
,
1

2

)}
∪

3⋃

j=1

{(
1

pj
,
1

qj

)
,

(
1− 1

qj
, 1− 1

pj

)}
. (28)12



By hypothesis, pi = qi, i = 1, 2, 3, thus (WN ) implies that
1

p2
+

1

p3
=

1

p1
, 2 ≥ p1 and p2, p3 ≥ 2.Hene the onvex hull of (28) simpli�es to

{
(x, x) ∈ R

2 : min

{
1− 1

p1
,
1

p2
,
1

p1
− 1

p2

}
≤ x ≤ max

{
1

p1
, 1− 1

p2
, 1− 1

p1
+

1

p2

}}
.Arguing by ontradition, it is simple to see that

min

{
1− 1

p1
,
1

p2
,
1

p1
− 1

p2

}
≤ 1

3
and 2

3
≤ max

{
1

p1
, 1− 1

p2
, 1− 1

p1
+

1

p2

}
.Therefore W ∈ Ms,s(R

N ), for every 3
2 ≤ s ≤ 3. In partiular W ∈ M2,2(R

N ) ∩M3,3(R
N ).To prove (ii), we notie that by interpolation we have thatW ∈ Mα,β(R

N ), for all α, β satisfying
1 ≤ α, β,

1

α
−
(
1− 1

r̄

)
≤ 1

β
≤ 1

α
. (29)We now de�ne

p2 = p3 =

{
3, if 4 ≤ N ≤ 5,
sN

sN−1 , if 6 ≤ N,
q2 = q3 =

{
3, if 4 ≤ N ≤ 5,

N, if 6 ≤ N,

p1 =

{
3
2 , if 4 ≤ N ≤ 5,
N

N−1 , if 6 ≤ N,
q1 =

{
3
2 , if 4 ≤ N ≤ 5,
p3q2
p3+q2

, if 6 ≤ N,

p4 = 2r̄
2r̄−1 , q4 = 2r̄, where

sN =





N

4
+ εN , if 6 ≤ N ≤ 7,

2(N + 1)

N + 2
, if 8 ≤ N,and εN > 0 is hosen small enough suh that 0 < εN < 2− N

4 if 6 ≤ N ≤ 7. Then we have that
2N

N + 2
< sN < 2, for any N ≥ 6. (30)Using that r̄ > N

4 and (30), we an verify that the hoie of (pi, qi), i ∈ {1, . . . , 4}, satis�es (29) with
α = pi and β = qi, as well as all the others restritions in the hypothesis (WN ), whih ompletesthe proof.Proof of Corollary 1.5. By Young inequality we have that W ∈ Mp,p(R

N ), for any 1 ≤ p ≤ ∞. Inpartiular the ondition W ∈ M1,1(R
N ) is ful�lled. If 1 ≤ N ≤ 3, the onlusion is a onsequeneof Proposition 1.3 and Theorem 1.2. If N ≥ 4, by Young inequality we have that W ∈ Mp,q(R

N ),for all 1 − 1
r ≤ 1

p ≤ 1, with 1
q = 1

p + 1
r − 1. Then the proof follows again from Proposition 1.3 andTheorem 1.2.4 Loal existeneIn order to prove Theorem 1.2 we �rst are going to prove the loal well-posedness. Theorem 1.10is based on the fat that if we set u = w + φ, then u is a solution of (NGP) with initial ondition

u0 = φ+ w0 if and only if w solves
{
i∂tw +∆w + f(w) = 0 on R

N × R,

w(0) = w0,
(31)13



with
f(w) = ∆φ+ (w + φ)(W ∗ (1 − |φ+ w|2)).We deompose f as
f(w) = g1(w) + g2(w) + g3(w) + g4(w), (32)with

g1(w) = ∆φ + (W ∗ (1− |φ|2))φ,
g2(w) = −2(W ∗ 〈〈φ,w〉〉)φ,
g3(w) = −(W ∗ |w|2)φ− 2(W ∗ 〈〈φ,w〉〉)w + (W ∗ (1− |φ|2))w,
g4(w) = −(W ∗ |w|2)w.The next lemma gives some estimates on eah of these funtions.Lemma 4.1. Assume that W satis�es (WN ). Using the numbers given by (WN ) and Lemma 3.3,let r1 = r2 = 2, r3 = p3, r4 = r̃, ρ1 = ρ2 = 2, ρ3 = q′1 and ρ4 = γ̃′. Then

gj ∈ C(H1(RN ), H−1(RN )), j ∈ {1, 2, 3, 4}. (33)Furthermore, for any M > 0 there exists a onstant C(M,W,φ) suh that
‖gj(w1)− gj(w2)‖

L
ρ′
j
≤ C(M,W,φ)‖w1 − w2‖

L
rj
, (34)for all w1, w2 ∈ H1(RN ) with ‖w1‖H1 , ‖w2‖H1 ≤M , and

‖gj(w)‖
W

1,ρ′
j
≤ C(M,W,φ)(1 + ‖w‖

W 1,rj
), (35)for all w ∈ H1(RN ) ∩W 1,rj(RN ) with ‖w‖H1 ≤M .Proof. Sine g1 is a onstant funtion of w, g1 ∈ C(H1(RN ), H−1(RN )) and (34) is trivial in thisase. The ondition (35) follows from the estimate

‖g1(w)‖H1 ≤‖∇φ‖H2 + ‖W‖2,2(‖1− |φ|2‖L2‖φ‖W 1,∞ + 2‖φ‖2L∞‖∇φ‖L2).Similarly we obtain for g2,
‖g2(w1)− g2(w2)‖L2 ≤ 2‖W‖2,2‖φ‖2L∞‖w1 − w2‖L2and

‖∇g2(w)‖L2 ≤ 2‖W‖2,2‖φ‖L∞

(
‖φ‖L∞‖∇w‖L2 + 2‖∇φ‖L∞‖w‖L2

)

≤ C(W,φ)‖w‖H1 .Then we dedue (34) and (35) for j = 2.For g3, we have
g3(w2)− g3(w1) = (W ∗ (|w1|2 − |w2|2))φ + 2(W ∗ 〈〈φ,w1 − w2〉〉)w1

+ 2(W ∗ 〈〈φ,w2〉〉)(w1 − w2) + (W ∗ (1− |φ|2))(w1 − w2).The assumption (WN ) allows to apply Lemma 3.1 and then we derive
‖g3(w2)− g3(w1)‖Lρ′

3
≤ C(W,φ)‖w1 − w2‖Lr3 (‖w1‖Ls1 + ‖w2‖Ls1

+2‖w1‖Ls2 + 2‖w2‖Lp2 + 1).
(36)14



More preisely, the dependene on φ of the onstant C(W,φ) in the last inequality is given expliitlyby max{‖φ‖L∞ , ‖1− |φ|2‖Lp2}. By the Sobolev embedding theorem
H1(RN ) →֒ Lp(RN ), ∀ p ∈

[
2,

2N

N − 2

] if N ≥ 3 and ∀ p ∈ [2,∞) if N = 1, 2. (37)In partiular,
‖w1‖Ls1 + ‖w2‖Ls1 + 2‖w1‖Ls2 + 2‖w2‖Lp2 ≤ C(‖w1‖H1 + ‖w2‖H1),whih together with (36) gives us (34) for g3. With the same type of omputations, taking w ∈

H1(RN ), ‖w‖H1 ≤M , we have
‖∇g3(w)‖Lρ′

3
≤C(M,W,φ)(‖∇w‖Lr3 + ‖w‖Lr3 ),where the dependene on φ is in terms of ‖φ‖L∞ , ‖∇φ‖L∞ , ‖1− |φ|2‖Lp2 and ‖∇φ‖Lp2 .For g4, applying Lemma 3.3 we obtain

‖g4(w1)− g4(w2)‖Lρ′
4
≤ C(W )‖w1 − w2‖Lr4 ((‖w1‖Ls + ‖w2‖Ls)‖w1‖Lr4

+‖w2‖Ls‖w2‖Lr4 )and
‖∇g4(w)‖Lρ′

4
≤C(W )‖∇w‖Lr4 ‖w‖Lr4‖w‖Ls .As before, using (37), we onlude that g4 veri�es (34)-(35).Sine for 2 ≤ j ≤ 4, 2 ≤ rj <

2N
N−2 (2 ≤ rj <∞ if N = 1, 2), we have the ontinuous embeddings

H1(RN ) →֒ Lrj(RN ) and Lr′j (RN ) →֒ H−1(RN ).Then inequality (34) implies (33), for j ∈ {2, 3, 4}.Now we analyze the potential energy assoiated to (31). For any v ∈ H1(RN ) we set
F (v) :=

∫

RN

〈〈∆φ, v〉〉 dx − 1

4

∫

RN

(W ∗ (1 − |φ+ v|2))(1 − |φ+ v|2) dx, (38)and using the notation of Lemma 4.1, we �x for the rest of this setion
r = max{r1, r2, r3, r4, ρ1, ρ2, ρ3, ρ4}. (39)Lemma 4.2. Assume that W satis�es (WN ). Then the funtional F is well-de�ned on H1(RN ).If moreover W is a real-valued even distribution, we have the following properties.

(i) F is Fréhet-di�erentiable and
F ∈ C1(H1(RN ),R) with F ′ = f. (40)

(ii) For any M > 0, there exists a onstant C(M,W,φ) suh that
|F (u)− F (v)| ≤ C(M,W,φ)(‖u − v‖L2 + ‖u− v‖Lr), (41)for any u, v ∈ H1(RN ), with ‖u‖H1 , ‖v‖H1 ≤M .15



Proof. By Lemma 3.4, F is well-de�ned in H1(RN ) for any N . To prove (i), we ompute now theGâteaux derivative of F . For h ∈ H1(RN ) we have
dGF (v)[h] = lim

t→0

F (v + th)− F (v)

t

=

∫

RN

〈〈∆φ, h〉〉 dx +
1

2

∫

RN

(W ∗ 〈〈φ + v, h〉〉)(1 − |φ+ v|2) dx

+
1

2

∫

RN

(W ∗ (1− |φ+ v|2))〈〈φ + v, h〉〉 dx.Sine W is an even distribution, (26) implies that the last two integrals are equal. Finally we getthat
dGF (v)[h] =

∫

RN

〈〈f(v), h〉〉 dx = 〈f(v), h〉H−1,H1 .From (32) and (33), we have that f ∈ C(H1(RN ), H−1(RN )). Hene the map v → dGF (v) isontinuous from H1(RN ) to H−1(RN ), whih implies that F is ontinuously Fréhet-di�erentiableand satis�es (40).For the proof of (ii), using (40) and the mean-value theorem, we have
F (u)− F (v) =

∫ 1

0

d

ds
F (su+ (1− s)v) ds =

∫ 1

0

〈f(su+ (1− s)v), u − v〉H−1,H1 ds.Then by Lemma 4.1,
|F (u)− F (v)| ≤ sup

s∈[0,1]

4∑

j=1

‖gj(su + (1− s)v)‖
L

ρ′
j
‖u− v‖Lρj

≤
4∑

j=1

C(M,W,φ)(‖u‖Lrj + ‖v‖Lrj + 1)‖u− v‖Lρj .

(42)Sine we assume that ‖u‖H1 , ‖v‖H1 ≤M , (37) implies that
‖u‖Lrj + ‖v‖Lrj + 1 ≤ C(M). (43)Also, it follows from Lp-interpolation and Young's inequality that

‖u− v‖Lρj ≤ ‖u− v‖θjL2‖u− v‖1−θj
Lr ≤ ‖u− v‖L2 + ‖u− v‖Lr , (44)with θj = 2(r−ρj)

ρj(r−2) . By ombining (42), (43) and (44), we obtain (ii).Proof of Theorem 1.10. Realling that r was �xed in (39), we de�ne q by 1
q = N

2

(
1
2 − 1

r

). Given
T,M > 0, we onsider the omplete metri spae

XT,M = {w ∈ L∞((−T, T ), H1(RN )) ∩ Lq((−T, T ),W 1,r(RN )) :

‖w‖L∞((−T,T ),H1) ≤M, ‖w‖Lq((−T,T ),W 1,r) ≤M},endowed with the distane
dT (w1, w2) = ‖w1 − w2‖L∞((−T,T ),L2) + ‖w1 − w2‖Lq((−T,T ),Lr). (45)The estimates given in Lemmas 4.1, 4.2 and the Strihartz estimates show that the funtional

Φ(w) = eit∆w0 + i

∫ t

0

ei(t−s)∆f(w(s)) ds16



is a ontration in XT,M for some M ≤ C(‖w0‖H1 + 1) and T small enough, but depending onlyon ‖w0‖H1 . Then we have a solution given by Banah's �xed-point theorem. The arguments toomplete Theorem 1.10 are rather standard. For instane, Theorem 4.4.6 in [10℄ automatiallyimplies the existene, uniqueness, the blow-up alternative and that the funtion L(t) given by
L(t) := L1(t) +

1

4

∫

RN

(W ∗ (1− |φ+ w(t)|2))(1 − |φ+ w(t)|2) dx,with
L1(t) =

1

2

∫

RN

|∇w(t)|2 dx−
∫

RN

〈〈∆φ,w(t)〉〉 dx,is onstant for all t ∈ (−Tmin, Tmax). Notiing that
L1(t) =

1

2

∫

RN

|∇w(t) +∇φ|2 dx− 1

2

∫

RN

|∇φ|2 dx,we onlude that the energy is onserved.However, the ontinuous dependene on the initial data in H1(RN ) is not obvious, beause thedistane (45) does not involve derivatives. Therefore we give the omplete proof of this point. Herewe will omit the dependene on W and φ in the generi onstant C, sine it plays no role in theanalysis of ontinuous dependene. Let w0,n, w0 ∈ H1(RN ) be suh that
w0,n → w0 in H1(RN ).Then for some n0 ≥ 0,

‖w0,n‖H1 ≤ ‖w0‖H1 + 1, ∀n ≥ n0.We denote wn and w the solutions with initial data w0,n and w0, respetively. Then by the �xed-point argument, there exist T > 0 and a onstant C(‖w0‖H1), both depending only on ‖w0‖H1 ,suh that wn and w are de�ned in [−T, T ] for all n ≥ n0 and
‖wn‖L∞((−T,T ),H1) + ‖w‖L∞((−T,T ),H1) ≤ C(‖w0‖H1), ∀n ≥ n0. (46)Sine

wn(t)− w(t) = eit∆(w0,n − w0) + i

∫ t

0

ei(t−s)∆(f(wn(s)) − f(w(s))) ds,using Strihartz estimates we have that
dT (wn, w) ≤ C‖w0,n − w0‖L2 + C

4∑

j=1

‖gj(wn)− gj(w)‖
L

γ′

j ((−T,T ),L
ρ′
j )
, (47)with 1

γj
= N

2

(
1
2 − 1

ρj

). By Lemma 4.1, (46), using as in (44) an Lp-interpolation inequality andYoung's inequality, we dedue that
‖gj(wn)− gj(w)‖ρ′

j
≤ C(‖w0‖H1)(‖wn − w‖L2 + ‖wn − w‖Lr). (48)Applying Hölder inequality with βj = 1
γ′

j
− 1

q ,
‖wn − w‖

L
γ′

j ((−T,T ),Lr)
≤ ‖wn − w‖Lq((−T,T ),Lr)(2T )

βj . (49)Notie that 0 < βj ≤ 1 sine 2 ≤ ρj, rj <
2N
N−2 . Assuming T ≤ 1 and putting together (48) and (49)we onlude that

‖gj(wn)− gj(w)‖
L

γ′

j ((−T,T ),L
ρ′
j )

≤ C(‖w0‖H1)T βdT (wn, w), (50)17



with β = min{βj, 1/γ′j : 1 ≤ j ≤ 4}. Choosing T suh that 4T βC(‖w0‖H1) ≤ 1
2 , (47) and (50) give

dT (wn, w) ≤ 2C(‖w0‖H1)‖w0,n − w0‖H1 .Hene
wn → w, in C([−T, T ], L2(RN )) ∩ Lq((−T, T ), Lr(RN )).Thus from (46) and the Gagliardo-Nirenberg inequality, we onlude that wn → w in C([−T, T ], Lp(RN )),for every 2 ≤ p <∞ if N = 1, 2 and 2 ≤ p < 2N

N−2 if N ≥ 3. Using the inequality (41) in Lemma 4.2,it follows that F (wn) → F (w) in C([−T, T ]). Sine the energy is onserved for w and wn, thisimplies that
‖∇wn‖L2 → ‖∇w‖L2 in C([−T, T ]).In addition, from the equation i∂twn = −∆wn − f(wn) in [−T, T ], we get

‖∂twn‖H−1 ≤ ‖wn‖H1 +

4∑

j=1

‖gj(wn)‖H−1 ,Hene Lemma 4.1 and (46) provide a uniform bound for wn in C1([−T, T ], H−1(RN )). Therefore
wn → w in C([−T, T ], H1(RN )) (see Proposition 1.3.14 in [10℄). A overing argument allows us to�nish the proof in any losed bounded interval.Sine the generalized momentum still needs a preise de�nition, we will postpone the proof ofits onservation until Setion 7.We prove now Propositions 1.4 and 1.7 beause the arguments involved are very similar to thoseused in this setion. For these proofs we suppose that Theorem 1.2 is already proved.Proof of Proposition 1.4. Let un = φ+ wn and u∞ = φ + w∞, where wn, w∞ ∈ C(R, H1(RN )), bethe global solution of (NGP) with potentials Wn and W∞, respetively, with the same initial data
u0 = φ+w0, with w0 ∈ H1(RN ). In the same spirit of the proof of Theorem 1.10, for v ∈ H1(RN ),we set

fn(v) = g1,n(v) + g2,n(v) + g3,n(v) + g4,n(v),with
g1,n(v) = ∆φ+ (Wn ∗ (1− |φ|2))φ,
g2,n(v) = −2(Wn ∗ 〈〈φ, v〉〉)φ,
g3,n(v) = −(Wn ∗ |v|2)φ− 2(Wn ∗ 〈〈φ, v〉〉)w + (Wn ∗ (1− |φ|2))v,
g4,n(v) = −(Wn ∗ |v|2)v,for any n ∈ N ∪ {∞}. Notiing that for any v1, v2 ∈ H1(RN ), 1 ≤ j ≤ 4,
gj,n(v1)− gj,m(v2) = (gj,n(v1)− gj,n(v2)) + (gj,n(v2)− gj,m(v2)) ,Proposition 1.3, Lemma 3.1, the proof of Lemma 3.3 and the same argument given in Lemma 4.1allows us to onlude that (we omit from now on the dependene on φ)

‖gj,n(v1)− gj,m(v2)‖
L

ρ′
j
≤ C(Wn,M)‖v1 − v2‖Lrj + C(Wn −Wm,M)(‖v2‖Lrj+1), (51)for any n,m ∈ N ∪ {∞} and v1, v2 ∈ H1(RN ) with ‖v1‖H1 , ‖v2‖H1 ≤ M , with (the new hoie of)

ρj , rj given by
ρ1 = ρ2 = r1 = r2 = 2, ρ3 = r3 = 3, ρ4 = r4 = 4, (52)and

C(W,M) = σ(W )C(M), with σ(W ) = max{‖W‖2,2, ‖W‖3,3}. (53)18



By the uniqueness provided by Theorem 1.2, the funtions wn are given by the �xed-point argu-ment of the proof of Theorem 1.10. Sine the estimates for the �xed point an be obtained usingLemma 4.1, but with the values in (52), and by (14) we may assume that for k = 2, 3

1

2
‖W∞‖k,k ≤ ‖Wn‖k,k ≤ 2‖W∞‖k,k,so that we have uniform bounds on Wn. Therefore we onlude that there exist some T ≤ 1 and

C > 0 that only depend on ‖w0‖H1 , ‖W∞‖2,2 and ‖W∞‖3,3 suh that
‖wn‖L∞((−T,T ),H1) ≤ C, for any n ∈ N ∪ {∞}. (54)Using the distane

dT (w1, w2) = ‖w1 − w2‖L∞((−T,T ),L2) + ‖w1 − w2‖
L

8

N ((−T,T ),L4)
,the estimates (51), (54) and following the lines of the proof of Theorem 1.10, it leads to

dT (wn, w∞) ≤ Cσ(Wn −W∞).Hene the hypothesis (14) and (53) imply that
wn → w∞ in C([−T, T ], L2(RN )) ∩ L 8

N ((−T, T ), L4(RN )).Then (54) and the Gagliardo-Nirenberg inequality imply that
wn → w∞ in C([−T, T ], Lp(RN )), ∀ p ∈ [2,∞) if N = 1, 2 and ∀ p ∈

[
2,

2N

N − 2

) if N ≥ 3. (55)We denote by Fn the funtion given by (38), with W replaed by Wn, so that the onservedenergy for eah un is
En(un(t)) = ‖∇wn(t)‖L2 + Fn(wn(t)) = ‖∇w0‖L2 + Fn(w0), for any t ∈ R. (56)The inequality (51) and similar arguments as in the proof of Lemma 4.2 give for any v1, v2 ∈ H1(RN )with ‖v1‖H1 , ‖v2‖H1 ≤M , that there exists a onstant C depending only on M , ‖W∞‖2,2 and

‖W∞‖3,3, suh that
|Fn(v1)− Fm(v2)| ≤ C (‖v1 − v2‖L2 + ‖v1 − v2‖L4) + Cσ(Wn −Wm). (57)By putting together (54), (55) and (57), we dedue that Fn(wn) → F∞(w∞) in C([−T, T ]). Thenby (56) we have that ‖∇wn‖L2 → ‖∇w∞‖L2 in C([−T, T ]). The onlusion follows as in the proofof Theorem 1.10.Proof of Proposition 1.7. Using the notation introdued at the beginning of this setion, by Lemma5.3.1 in [10℄, we only need to prove that for any 1 ≤ j ≤ 4 and any w ∈ Hs(RN ) suh that

‖w‖H1 ≤M, we have
‖gj(w)‖L2 ≤ C(W,M,φ) (1 + ‖w‖Hs) , (58)for some 0 < s < 2. From the estimate (35) in Lemma 4.1 and the Sobolev embedding theorem,we have the inequality (58) for j = 1, 2 for any s ≥ 1. For j = 3, 4 we note that by the Sobolevembedding theorem,

W 1,p(RN ) →֒ L2(RN ), ∀p ∈
[

2N

N + 2
, 2

] if N ≥ 3 and ∀p ∈ [1, 2] if N = 1, 2,and for any
r ∈

[
2,

2N

N − 2

]
, if N ≥ 3 and r ∈ [2,∞) if N = 1, 2,there exists 3

2 < s < 2 suh that Hs(RN ) →֒ W 1,r(RN ). Thus we have for j = 3, 4 that
W 1,ρ′

j (RN ) →֒ L2(RN ) and Hsj (RN ) →֒ W 1,rj(RN ), for some sj < 2. Setting s = max{s3, s4},from the inequality (35) we obtain estimate (58)19



5 Global existeneIn order to omplete the proof of Theorem 1.2 we need to prove that the solutions given by Theo-rem 1.10 are global. We do this by establishing an appropriate estimate for ‖w(t)‖L2 . We distinguishthree subases, assoiated to the di�erent assumptions on W .Proof of Theorem 1.2-(i)-(a). We reall that by Theorem 1.10 we already have the onservation ofenergy
E0 =

1

2

∫

RN

|∇w(t) +∇φ|2 dx+
1

4

∫

RN

(W ∗ (|φ+ w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx, (59)for any t ∈ (−Tmin, Tmax). Sine we are assuming that W is a positive de�nite distribution, thepotential energy, i.e. the seond integral in (59), is nonnegative. Hene
1

2

∫

RN

|∇w(t) +∇φ|2 dx ≤ E0and using the elementary inequality
∫

RN

|∇w∇φ| dx ≤ 1

4
‖∇w‖2L2 + ‖∇φ‖2L2 , (60)we onlude that

‖∇w(t)‖2L2 ≤ 4E0 + 2‖∇φ‖2L2, t ∈ (Tmin, Tmax), (61)whih gives a uniform bound for ‖∇w(t)‖L2 . Therefore we only need an appropriate bound for
‖w(t)‖L2 to onlude that

sup{‖w(t)‖H1 : t ∈ (−Tmin, Tmax)} <∞. (62)In virtue of the blow-up alternative in Theorem 1.10, we will dedue from (62) that Tmax = Tmin =
∞, whih will omplete the proof.Now we prove the bound for ‖w(t)‖L2 . For any t ∈ (−Tmin, Tmax), we multiply (in the H−1−H1duality sense) the equation (31) by iw, to get

1

2

d

dt
‖w(t)‖2L2 =Re

∫

RN

if(w(t))w(t) dx

= − Im

∫

RN

(∆φ+ φ(W ∗ (1− |φ+ w(t)|2))w(t) dx.Then
1

2

∣∣∣∣
d

dt
‖w(t)‖2L2

∣∣∣∣ ≤‖∆φ‖L2‖w(t)‖L2 + ‖φ‖L∞

∫

RN

|W ∗ (|φ+ w(t)|2 − 1)||w(t)| dx. (63)We bound the last integral in (63) by H1(t) +H2(t), with
H1(t) =

∫

RN

|W ∗ (|φ|2 − 1 + 2〈〈φ,w(t)〉〉)||w(t)| dx,

H2(t) =

∫

RN

|W ∗ |w(t)|2||w(t)| dx.Sine W ∈ M2,2(R
N ),
|H1(t)| ≤‖W ∗ (|φ|2 − 1 + 2〈〈φ,w〉〉)‖L2‖w(t)‖L2

≤‖W‖2,2
(
‖|φ|2 − 1‖L2 + 2‖φ‖L∞‖w(t)‖L2

)
‖w(t)‖L2 .20



Therefore we have
|H1(t)| ≤ C(W,φ)(1 + ‖w(t)‖2L2). (64)If N ≥ 4, by Lemma 3.2 and the Sobolev embedding theorem,

|H2(t)| ≤‖W ∗ |w(t)|2‖L2‖w(t)‖L2

≤C(W )‖w(t)‖2
L

2N
N−2

‖w(t)‖L2

≤C(W )‖∇w(t)‖2L2‖w(t)‖L2 .By (61) we onlude that
|H2(t)| ≤ C(W,φ,E0)‖w(t)‖L2 , for all N ≥ 4. (65)If N = 2, 3, we only need to use that W ∈ M2,2(R

N ), together with the Gagliardo-Nirenberginequality. In fat,
|H2(t)| ≤‖W ∗ |w(t)|2‖L2‖w(t)‖L2

≤C(W )‖w(t)‖2L4‖w(t)‖L2

≤C(W )‖∇w(t)‖
N
2

L2‖w(t)‖3−
N
2

L2 .Sine we are onsidering N = 2, 3, using (61) it follows that
‖H2(t)‖L2 ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2), N = 2, 3. (66)From inequalities (63)�(66) we have that for any N ≥ 2

∣∣∣∣
d

dt
‖w(t)‖2L2

∣∣∣∣ ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2), t ∈ (−Tmin, Tmax). (67)By Gronwall's lemma we onlude that
‖w(t)‖L2 ≤ C(W,φ,E0)e

C(W,φ,E0)|t|(1 + ‖w0‖L2), t ∈ (−Tmin, Tmax).As we disussed before, this estimate implies (62), whih �nishes the proof if W is positive de�-nite.Remark 5.1. We note that the argument given in the proof Theorem 1.2-(i)-(a) fails in dimension
N = 1. In this ase if we apply the Gagliardo-Nirenberg inequality to H2, instead of (67) we obtaina bound for ‖w(t)‖2L2 in terms of ‖w(t)‖5/2L2 , whih prevents to onlude applying Gronwall's lemma.Proof of Theorem 1.2-(i)-(b). In the ase thatW is a positive distribution, we annot infer from (59)a uniform bound on ‖∇w(t)‖L2 . However, using that W ∈ M1,1(R

N ), we will see that ‖∇w(t)‖L2an be bounded in terms of ‖w(t)‖L2 and that we may dedue an inequality suh as (67) (withoutassuming that ‖∇w(t)‖L2 is a priori bounded). Then the onlusion follows as before.Let A = 4‖φ‖L∞ + 1. Setting
wA(x, t) = w(x, t)χ({y ∈ R

N : |w(y, t)| ≤ A})(x),
wAc(x, t) = w(x, t)χ({y ∈ R

N : |w(y, t)| > A})(x),where χ is the harateristi funtion, we dedue that w = wA + wAc , |w| = |wA| + |wAc |, |w|2 =
|wA|2 + |wAc |2 and

∫

RN

(W ∗ (|φ + w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx = I1(t) + I2(t) + I3(t), (68)21



with
I1(t) =

∫

RN

(W ∗ (|φ|2 − 1 + 2〈〈φ,w(t)〉〉))(|φ|2 − 1 + 2〈〈φ,w(t)〉〉) dx

+ 2

∫

RN

(W ∗ |w(t)|2)(|φ|2 − 1) dx,

I2(t) =

∫

RN

(W ∗ |w(t)|2)(4〈〈φ,wA(t)〉〉 + |wA(t)|2) dx,

I3(t) =

∫

RN

(W ∗ |w(t)|2)(4〈〈φ,wAc(t)〉〉 + |wAc(t)|2) dx.Notie that we have used that W is even to deompose it in terms of I1, I2 and I3. Sine the energy(59) is onserved in the maximal interval (−Tmin, Tmax), using (60) and (68), we have that for any
t ∈ (−Tmin, Tmax),

‖∇w(t)‖2L2 + I3(t) ≤ |I1(t)|+ |I2(t)|+ 4|E0|+ 2‖∇φ‖2L2. (69)Sine W is a positive distribution, the hoie of A implies that
I3(t) ≥

∫

RN

(W ∗ |w(t)|2)|wAc(t)|(|wAc (t)| − 4‖φ‖L∞) dx

≥
∫

RN

(W ∗ |w(t)|2)|wAc(t)| dx ≥ 0,

(70)so that I3 is nonnegative. Using that W ∈ M1,1(R
N ) we also have

|I1(t)| ≤‖W‖2,2(‖|φ|2 − 1‖L2 + 2‖φ‖L∞‖w‖L2)2 + 2‖W‖1,1‖w‖2L2(‖φ‖2L∞ + 1) (71)and
|I2(t)| ≤ ‖W‖1,1(4A‖φ‖L∞ +A2)‖w(t)‖2L2 . (72)From inequalities (69), (71) and (72), we obtain that

‖∇w(t)‖2L2 + I3(t) ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2), (73)for any t ∈ (−Tmin, Tmax).Let us set
J1(t) =

∫

RN

|(W ∗ (|φ|2 − 1 + 2〈〈φ,w(t)〉〉))w(t)| dx,

J2(t) =

∫

RN

|(W ∗ |w(t)|2)wA(t)| dx,

J3(t) =

∫

RN

|(W ∗ |w(t)|2)wAc(t)| dx.Then the last integral in (63) is bounded by J1(t) + J2(t) + J3(t). As before, we onlude that
J1(t) + J2(t) ≤ C(W,φ)(1 + ‖w(t)‖2L2). (74)From (70) we have J3(t) ≤ I3(t). Then (73) and (70) imply that
J3(t) ≤ C(W,φ,E0)(1 + ‖w(t)‖2L2). (75)The estimates (74) and (75), together with (63), provide again the inequality (67), and then theproof is ompleted as in the previous ase. 22



Proof of Theorem 1.2-(ii). As before, the loal well-posedness follows from Theorem 1.10. Moreover,from Theorem 1.2-(i)-(a) we have the global well-posedness for N ≥ 2. From Proposition 2.2 wehave that W is a positive de�nite distribution and, as shown before, this implies that ‖∇w(t)‖L2is uniformly bounded in the maximal interval (−Tmin, Tmax) in terms of E0 and φ (see inequality(61)). Then it only remains to prove the inequality (13), for t ∈ (−Tmin, Tmax).The argument follows the lines of the proof in [2℄ for the loal Gross-Pitaevskii equation. Forsake of ompleteness we give the details.Sine W is positive de�nite, from the onservation of energy we have
0 ≤

∫

RN

(W ∗ (|φ + w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx ≤ 4E0. (76)On the other hand, Lemma 2.4 gives a lower bound for the potential energy
σ‖|φ+ w(t)|2 − 1‖2L2 ≤

∫

RN

(W ∗ (|φ+ w(t)|2 − 1))(|φ+ w(t)|2 − 1) dx. (77)From (63) and using Hölder inequality we obtain
1

2

∣∣∣∣
d

dt
‖w(t)‖2L2

∣∣∣∣ ≤‖∆φ‖L2‖w(t)‖L2 + ‖W‖2,2‖φ‖L∞‖|φ+ w(t)|2 − 1‖L2‖w(t)‖L2 . (78)Thus from (76), (77) and (78), we have that for any δ > 0

1

2

∣∣∣∣
d

dt
(‖w(t)‖2L2 + δ)

∣∣∣∣ ≤ (‖w(t)‖2L2 + δ)
1

2

(
‖∆φ‖L2 + ‖W‖2,2‖φ‖L∞

√
4E0

σ

)
.Dividing by ‖w(t)‖2L2 + δ > 0, integrating and then taking δ → 0 we onlude that

‖w(t)‖L2 ≤
(
‖∆φ‖L2 + ‖W‖2,2‖φ‖L∞

√
4E0

σ

)
|t|+ ‖w0‖L2 , (79)for any t ∈ (−Tmin, Tmax). As disussed before, this implies that ‖w(t)‖H1 is uniformly boundedin (−Tmin, Tmax). Therefore by the blow-up alternative, we infer that Tmin = Tmax = ∞. Sine

u(t) = w(t) + φ and u0 = w0 + φ, (79) implies (13), �nishing the proof.6 Equation (NGP) in energy spaeWe reall the following results about the energy spae E(RN ). We refer to [19, 18, 17℄ for theirproofs.Lemma 6.1. Let u ∈ E(RN ). Then there exists φ ∈ C∞
b ∩ E(RN ) with ∇φ ∈ H∞(RN ), and

w ∈ H1(RN ) suh that u = φ+ w.Lemma 6.2. Let 1 ≤ N ≤ 4. Then E(RN ) is a omplete metri spae with the distane (15),
E(RN ) +H1(RN ) ⊂ E(RN ) and the maps

u ∈ E(RN ) 7→ ∇u ∈ L2(RN ), u ∈ E(RN ) 7→ 1− |u|2 ∈ L2(RN ),

(u,w) ∈ E(RN )×H1(RN ) 7→ u+ w ∈ E(RN )are ontinuous. 23



Lemma 6.3. Assume 1 ≤ N ≤ 4. Let W ∈ M2,2(R
N ), u ∈ C(R, E(RN )), v ∈ C(R, L2(RN )) and

Φ(t) :=

∫ t

0

ei(t−s)∆u(s)(W ∗ v(s)) ds, t ∈ [0, T ].Then Φ ∈ C([0, T ], L2(R2)) and there exists a universal onstant C suh that
‖Φ‖L∞((0,T ),L2) ≤ Cmax{T, T 8−N

N }‖W‖2,2(‖1−|u|2‖L∞((0,T ),L2)+‖∇u‖L∞((0,T ),L2))‖v‖L∞((0,T ),L2).Proof. By Lemma 1 in [19℄ and Lemma 6.2, we may deompose u(t) = u1(t) + u2(t), with
‖u1‖L∞(R,L∞) ≤ 3 and

‖u2‖L∞((0,T ),H1) ≤ C(‖1− |u|2‖L∞((0,T ),L2) + ‖∇u‖L∞((0,T ),L2)). (80)Let us set
Φj(t) :=

∫ t

0

ei(t−s)∆uj(s)(W ∗ v(s)) ds, j = 1, 2.By the Strihartz estimates we have that Φ1 ∈ C([0, T ], L2(R2)) and
‖Φ1‖L∞((0,T ),L2) ≤ CT ‖W‖2,2‖v‖L∞(R,L2). (81)Sine (8/N, 4) is an admissible Strihartz pair in dimension 1 ≤ N ≤ 4, we also infer that Φ2 ∈

C([0, T ], L2(R2)) and
‖Φ2‖L∞((0,T ),L2) ≤ CT

8−N
N ‖u(W ∗ v)‖L∞(R,L4/3)

≤ CT
8−N
N ‖W‖2,2‖u‖L∞(R,L4)‖v‖L∞(R,L2)

(82)Combining (80)-(82) and using the Sobolev embedding H1(RN ) →֒ L4(RN ), the onlusion follows.Proof of Theorem 1.6. After Theorem 1.2, the proof follows the same arguments given in [17℄. Forsake of ompleteness we sketh the proof.Given u0 ∈ E(RN ), by Lemma 6.1 we have that u0 = φ + w̃0, for some w̃0 ∈ H1(RN ) and
φ satisfying (10). Thus Theorem 1.2 gives a solution of (NGP) of the form u = φ + w̃, with
w̃ ∈ C(R, H1(RN )). Therefore u = u0 + w, with w = w̃ − w̃0 is the desired solution. To prove theuniqueness in the energy spae, we onsider 1 ≤ N ≤ 4. Let v ∈ C(R, E(RN )) be a mild solution of(NGP) with v(0) = u0. It is su�ient to show that v − u0 ∈ C(R, H1(RN )), beause then we mayapply the uniqueness result given by Theorem 1.2. We do this by proving that u−v ∈ C(R, H1(RN )).Note that by Lemma 6.2, u ∈ u0 + C(R, H1(RN )) ⊂ C(R, E(RN )) and ∇u,∇v ∈ C(R, L2(RN )). Itonly remains to prove that u− v ∈ C(R, L2(RN )). Let T > 0 and t ∈ [0, T ], then

u(t)− v(t) = i

∫ t

0

ei(t−s)∆(G(u(s)) −G(v(s))) ds,with
G(u)−G(v) = u(W ∗ (|v|2 − |u|2)) + (u− v)(W ∗ (1− |v|2)).Applying Lemma 6.3 to u(W ∗ (|v|2 − |u|2)) and (u − v)(W ∗ (1 − |v|2)), we onlude that u− v ∈

C([0, T ], L2(RN )).7 Other onservation lawsIn this setion we onsider a global solution u of (NGP) given by Theorem 1.2. We have already seenthat the energy is onserved by the �ow of this solution. Now we disuss the notions of momentumand mass assoiated to the equation (NGP), that are also formally onserved.24



7.1 The momentumThe vetorial momentum for (NGP) is given by
p(u) =

1

2

∫

RN

〈〈i∇u, u〉〉 dx. (83)A formal omputation shows that the derivative of the momentum is zero and thus it is a onservedquantity. Moreover, if u = φ+ w we have
p(u) =

1

2

∫

RN

〈〈i∇φ, φ〉〉 dx +
1

2

∫

RN

〈〈i∇w,w〉〉 dx

+
1

2

∫

RN

〈〈i∇φ,w〉〉 dx+
1

2

∫

RN

〈〈i∇w, φ〉〉 dx.Here the problem is that 〈〈i∇φ, φ − 1〉〉 and 〈〈i∇w, φ − 1〉〉 are not neessarily integrable for w ∈
C(R, H1(RN )). However, a formal integration by parts yields

p(u) =
1

2

∫

RN

〈〈i∇φ, φ〉〉 dx+
1

2

∫

RN

〈〈i∇w,w〉〉 dx +

∫

RN

〈〈i∇φ,w〉〉 dx, (84)reduing the ill-de�ned term to 〈〈i∇φ, φ〉〉, supposing that we an justify the integration by parts. Inorder to give a rigorous sense to these omputations, we use the following de�nition proposed byMari³ in [32℄.De�nition 7.1. Let X (RN ) = {∇v : v ∈ Ḣ1(RN )} and Xj(R
N ) = {∂jv : v ∈ Ḣ1(RN )}, with

j = 1, . . . , N. For any h1 ∈ L1(RN ) and h2 ∈ Xj(R
N ) we de�ne the linear operator Lj on L1(RN )+

Xj(R
N ) by

Lj(h1 + h2) =
1

2

∫

RN

h1 dx.Lemma 7.2. Let N ≥ 2 and j ∈ {1, . . . , N}. Then
∫

RN

h = 0, for any h ∈ L1(RN ) ∩ Xj(R
N ).In partiular Lj is a well-de�ned linear ontinuous operator on L1(RN )+Xj(R

N ) in any dimension
N ≥ 2.Proof. The proof of Lemma 7.2 is given by Mari³ (Lemma 2.3 in [32℄) in the ase N ≥ 3. Thesame argument works in dimension two, provided that a funtion in Ḣ1(R2) de�nes a tempereddistribution. In fat, this last point was shown by Gérard (see [18℄, p. 8), onluding the proof.Following the ideas proposed in [32℄ in dimension N ≥ 3, we have the following result that isessential to de�ne our notion of momentum.Lemma 7.3. Let N ≥ 2, j = 1, . . . , N and w ∈ H1(RN ). Then 〈〈i∂jφ, φ〉〉 ∈ L1(RN ) + Xj(R

N ),
〈〈i∂jφ,w〉〉 ∈ L1(RN ), 〈〈iφ, ∂jw〉〉 ∈ L1(RN ) + Xj(R

N ) and
Lj(〈〈i∂jφ,w〉〉) = −Lj(〈〈iφ, ∂jw〉〉). (85)Proof. The assumption (10) implies that there is a radius R > 1 suh that |φ(x)| ≥ 1

2 , for all
x ∈ B(0, R)c and φ is C1 in B(0, R)c. Then, there are some salar funtions ρ̃, θ̃ ∈ C1(B(0, R)c) ∩
H1lo(B(0, R)c) suh that

φ = ρ̃eiθ̃, on B(0, R)c.25



Moreover, sine ∂jφ ∈ L2(RN ) and
|∂jφ|2 = |∂j ρ̃|2 + ρ̃2|∂j θ̃|2, on B(0, R)cwe dedue that ∂j ρ̃, ∂j θ̃ ∈ L2(B(0, R)c). By Whitney extension theorem (f. [29℄, p. 167), thereexist salar funtions ρ, θ ∈ C1(RN ) suh that ρ = ρ̃ and θ = θ̃ on B(0, R)c. Setting

φ1 = ρeiθ and φ2 = φ− φ1,we have
〈〈i∂jφ, φ〉〉 = 〈〈i∂jφ1, φ1〉〉+ 〈〈i∂jφ1, φ2〉〉+ 〈〈i∂jφ2, φ1〉〉+ 〈〈i∂jφ2, φ2〉〉. (86)Sine suppφ2, supp∇φ2 ⊂ B̄(0, R), the last three terms in the r.h.s. of (86) belong to L1(RN ). Forthe remaining term, a diret omputation gives

〈〈i∂jφ1, φ1〉〉 = −ρ2∂jθ = (1− ρ2)∂jθ − ∂jθ, on R
N . (87)The fat that ∂j θ̃ ∈ L2(B(0, R)c) implies that ∂jθ ∈ L2(RN ) and from (10) it follows that

|ρ|2 − 1 ∈ L2(RN ). Therefore from (87) we onlude that 〈〈i∂jφ1, φ1〉〉 ∈ L1(RN ) + Xj(R
N ) andhene 〈〈i∂jφ, φ〉〉 ∈ L1(RN ) + Xj(R

N ).To �nish the proof, we notie that from (10) and the above omputations we also have that φ1 ∈
X (RN )∩C1(RN )∩W 1,∞(RN ) and φ2 ∈ H1(RN ). Then a slight modi�ation of the argument givenin Lemma 2.5 in [32℄, allows us to dedue that 〈〈i∂jφ,w〉〉 ∈ L1(RN ), 〈〈iφ, ∂jw〉〉 ∈ L1(RN ) + Xj(R

N )and the identity (85).In virtue of Lemma 7.3 and making an analogy to (83), for N ≥ 2 and u ∈ φ + H1(RN ), wede�ne the generalized momentum q = (q1, . . . , qN ) as
qj(u) = Lj(〈〈i∂ju, u〉〉), j = 1 . . . , N.Furthermore, by (85) we have

qj(u) = Lj(〈〈i∂jφ, φ〉〉) +
1

2

∫

RN

〈〈i∂jw,w〉〉 dx+

∫

RN

〈〈i∂jφ,w〉〉 dx, (88)whih an be seen as a rigorous formulation of (84).In dimension one, the operator Lj is not well-de�ned. In fat, following the idea of the proof ofLemma 7.3, if we assume that u = ρeiθ then
〈〈iu′, u〉〉 = −ρ2θ′ = (1− ρ2)θ′ − θ′.Supposing that lim

R→∞
(θ(R)− θ(−R)) exists, we would have

∫

R

θ′(x) dx = lim
R→∞

(θ(R)− θ(−R)). (89)Thus we neessarily need to modify the de�nition of the momentum in the one-dimensional ase totake into aount the phase hange (89). This approah is taken in [7℄ using the following notion ofuntwisted momentum.De�nition 7.4. For u ∈ φ+H1(R), we de�ne the operator L on φ+H1(R) by
L(u) = lim

R→∞

(
1

2

∫ R

−R

〈〈iu′, u〉〉dx +
1

2
(arg u(R)− argu(−R))

) mod π (90)26



In [7℄ it is proved that the limit in (90) atually exists. Therefore, as in the higher dimensionalase, we de�ne the generalized momentum in dimension one as
q1(u) = L(u).The following result shows that this de�nition gives us an analogous expression to (88).Lemma 7.5 ([7℄). Let u = φ+ w, w ∈ H1(R). Then

q1(u) = L(φ) + 1

2

∫

R

〈〈iw′, w〉〉 dx +

∫

R

〈〈iφ′, w〉〉 dx.Now that we have explained the notion of generalized momentum in any dimension, we anproeed to prove Theorem 1.8.Proof of Theorem 1.8. In view of the ontinuous dependene of the �ow, Lemma 7.5, (88) andProposition 1.7, we only need to prove the onservation of momentum for u0 = φ + w0, with
w0 ∈ H2(RN ). Thus we assume that u − φ = w ∈ C(R, H2(RN )) ∩ C1(R, L2(RN )). Integrating byparts we have that for any j = 1, . . . , N and t ∈ R,

∂tqj(u(t)) = ∂t

(
1

2

∫

RN

〈〈i∂jw(t), w(t)〉〉 dx+

∫

RN

〈〈i∂jφ,w(t)〉〉 dx
)

=

∫

RN

〈〈i∂j(w(t) + φ), ∂tw(t)〉〉 dx

=

∫

RN

〈〈i∂ju(t), ∂tu(t)〉〉 dx

=

∫

RN

〈〈∂ju(t),∆u(t) + u(t)(W ∗ (1− |u(t)|2))〉〉 dx.Sine |∇u(t)|2 ∈W 1,1(RN ), an integration by parts leads to
∂tqj(u(t)) = −1

2

∫

RN

∂j |∇u(t)|2 dx+

∫

RN

(W ∗ (1− |u(t)|2))〈〈u(t), ∂ju(t)〉〉 dx

=

∫

RN

(W ∗ (1− |u(t)|2))〈〈u(t), ∂ju(t)〉〉 dx.
(91)Now we notie that

∂j
(
(1− |u|2)(W ∗ (1− |u|2))

)
= −2〈〈u, ∂ju〉〉(W ∗ (1− |u|2))− 2(1− |u|2)(W ∗ 〈〈u, ∂ju〉〉). (92)From (92) and Lemma 3.4, we have

∫

RN

〈〈u, ∂ju〉〉(W ∗ (1 − |u|2)) dx =

∫

RN

(1− |u|2)(W ∗ 〈〈u, ∂ju〉〉) dx. (93)Sine ((1− |u(t)|2)(W ∗ (1− |u(t)|2))
)
∈ W 1,1(RN ), from (91), (92) and (93) we infer that

∂tqj(u(t)) = −1

4

∫

RN

∂j
(
(W ∗ (1 − |u(t)|2))(1 − |u(t)|2)

)
dx = 0,onluding the proof.Remark 7.6. This argument also proves the onservation of momentum stated in Theorem 1.10.27



7.2 The massIn a reent artile, Béthuel et al. [6℄ give a de�nition for the mass for the loal Gross-Pitaevskiiequation in the one-dimensional ase. In this subsetion we try to extend this notion to higherdimensions.Let χ ∈ C∞
0 (R;R) be a funtion suh that χ(x) = 1 if |x| ≤ 1, χ(x) = 0 if |x| ≥ 2 and

‖χ′‖L∞ , ‖χ′′‖L∞ ≤ 2. For any R > 0, a ∈ RN , we set
χa,R(x) = χ

( |x− a|
R

)
, x ∈ R

Nand the quantities
m+(u) = inf

a∈RN
lim sup
R→∞

∫

RN

(1− |u|2)χa,R dx, m−(u) = sup
a∈RN

lim inf
R→∞

∫

RN

(1− |u|2)χa,R dx.In the ase that 1 − |u|2 ∈ L1(RN ), m+(u) = m−(u). More generally, if u is suh that m+(u) =
m−(u), we de�ne the generalized mass as

m(u) ≡ m+(u) = m−(u).The following result is a more aurate version of Theorem 1.9 and shows that the generalizedmass is onserved if N ≤ 4. However, we need a faster deay for φ in dimensions three and four,whih is at least satis�ed by the travelling waves in the loal problem (see [21℄).Theorem 7.7. Let 1 ≤ N ≤ 4. In addition to (10), assume that ∇φ ∈ L
N

N−1 (RN ) if N = 3, 4.Suppose that u0 ∈ φ + H1(RN ) with m+(u0) (respetively m−(u0)) �nite. Then the assoiatedsolution of (NGP) given by Theorem 1.2 satis�es m+(u(t)) = m+(u0) (respetively m−(u(t)) =
m−(u0)), for any t ∈ R. In partiular, if u0 has �nite generalized mass, then the generalized massis onserved by the �ow, that is m(u(t)) = m(u0), for any t ∈ R.Proof. Let u0 = φ + w0 and u = φ + w, w0 ∈ H1(RN ), w ∈ C(R, H1(RN )) ∩ C1(R, H−1(RN )).We take a sequene w0,n ∈ H2(RN ) suh that w0,n → w0 in H1(RN ). By Proposition 1.7 and theontinuous dependene property of Theorem 1.2, the solutions un = φ + wn of (NGP) with initialdata φ+ w0,n satisfy

wn ∈ C(R, H2(RN )) ∩ C1(R, L2(RN )) and wn → w in C(I,H1(RN )), (94)for any bounded losed interval I.Setting η(t) = 1 − |u(t)|2, ηn(t) = 1 − |un(t)|2 and using that the funtions un are solution of(NGP), it follows
∂tηn(t) = −2Re(iun(t)∆un(t)).Then integrating by parts

∂t

(∫

RN

ηn(t)χa,R dx

)
=

∫

RN

∂tηn(t)χa,R dx = I1(t) + I2(t) + I3, (95)with
I1(t) = −2 Im

∫

RN

(wn(t)∇wn(t) + wn(t)∇φ)∇χa,R dx,

I2(t) = −2 Im

∫

RN

φ∇wn(t)∇χa,R dx,

I3 = −2 Im

∫

RN

φ∇φ∇χa,R dx.28



Notiing that ‖∆χa,R‖L2 ≤ CR
N−4

2 , we have that ‖∇χa,R‖L∞ and ‖∆χa,R‖L2 are uniformlybounded in a and R. Setting
Ωa,R = {x ∈ R

N : R < |x− a| < 2R}and using the Cauhy-Shwarz inequality we have
|I1(t)| ≤ C(φ)‖wn(t)‖L2(Ωa,R)(‖∇wn(t)‖L2(Ωa,R) + 1). (96)For I2, we �rst integrate by parts
I2(t) = 2 Im

∫

RN

wn(t)(∇φ∇χa,R + φ∆χa,R) dx,thus
|I2(t)| ≤ C(φ)‖wn(t)‖L2(Ωa,R). (97)Using Hölder inequality, it follows that

|I3| ≤
{
‖φ‖L∞‖∇φ‖L2(Ωa,R)‖∇χa,R‖L2 , if N = 1

‖φ‖L∞‖∇φ‖
L

N
N−1 (Ωa,R)

‖∇χa,R‖
L

N , if 2 ≤ N ≤ 4.
(98)Note that the hoie of χ implies that ‖∇χa,R‖LN is uniformly bounded in a and R in any dimension,and so is ‖∇χa,R‖L2 in dimension one. Then by putting together (95)-(98), we obtain

∣∣∣∣∂t
(∫

RN

ηn(t)χa,Rdx

)∣∣∣∣ ≤ C(φ)(‖wn(t)‖L2(Ωa,R)(1 + ‖∇wn(t)‖L2) + ‖∇φ‖LN∗(Ωa,R)),with N∗ = 2 if N = 1 and N∗ = N
N−1 if 2 ≤ N ≤ 4. Integrating this inequality between 0 and tand, by (94), passing to the limit we have

∣∣∣∣
∫

RN

η(t)χa,R dx−
∫

RN

η(0)χa,R dx

∣∣∣∣ ≤

C(φ)

∫ |t|

0

‖w(s)‖L2(Ωa,R)(1 + ‖∇w(s)‖L2) ds+ C(φ)|t|‖∇φ‖LN∗ (Ωa,R). (99)From the proof of Theorem 1.2, we dedue that for some onstant K, depending only on w0, E0, φand W,
‖w(t)‖L2 ≤ KeK|t|, ‖∇w(t)‖L2 ≤ KeK|t|. (100)Then, by Cauhy-Shwarz inequality,

∫ |t|

0

‖w(s)‖L2(Ωa,R)(1 + ‖∇w(s)‖L2) ds ≤KeK|t|

∫ |t|

0

‖w(s)‖L2(Ωa,R) ds

≤KeK|t||t| 12
(∫ |t|

0

∫

Ωa,R

|w(s)|2 dx ds
) 1

2

.This inequality together with (100), the dominated onvergene theorem and (99) imply that
lim

R→∞

(∫

RN

(1− |u(t)|2)χa,R dx−
∫

RN

(1− |u0|2)χa,R dx

)
= 0.The onlusion follows from the de�nition of m+, m− and m.29



An interesting open question is to extend the statement of Theorem 1.9 to a more meaningfulnotion of mass suh as
m

+(u) = inf
a∈R

lim sup
R→∞

∫

B(a,R)

(1− |u|2) dx, m
−(u) = sup

a∈R

lim inf
R→∞

∫

B(a,R)

(1− |u|2) dx.In fat, in the one-dimensional ase, one an hoose a test funtion χ suh that
‖χa,R‖L2(supp(∇χa,R))is uniformly bounded in a and R. Then one an see that Theorem 1.9 remains true replaing m by

m, reovering a result of Béthuel et al. (see Appendix in [6℄). However, in higher dimensions we donot know if this is possible.Referenes[1℄ A. Aftalion, X. Blan, and R. Jerrard. Nonlassial rotational inertia of a supersolid. Phys.Rev. Lett., 99(13):135301.1�135301.4, 2007.[2℄ V. Bania and L. Vega. On the Dira delta as initial ondition for nonlinear Shrödingerequations. Ann. Inst. H. Poinaré Anal. Non Linéaire, 25(4):697�711, 2008.[3℄ N. G. Berlo�. Nonloal nonlinear Shrödinger equations as models of super�uidity. J. LowTemp. Phys., 116(5-6):359�380, 1999.[4℄ N. G. Berlo� and P. H. Roberts. Motions in a Bose ondensate VI. Vorties in a nonloalmodel. J. Phys. A, 32(30):5611�5625, 1999.[5℄ F. Béthuel, P. Gravejat, and J.-C. Saut. Existene and properties of travelling waves for theGross-Pitaevskii equation. In A. Farina and J.-C. Saut, editors, Stationary and time depen-dent Gross-Pitaevskii equations. Wolfgang Pauli Institute 2006 themati program, January�Deember, 2006, Vienna, Austria, volume 473 of Contemporary Mathematis, pages 55�104.Amerian Mathematial Soiety.[6℄ F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets. On the Korteweg-de Vries long-waveapproximation of the Gross-Pitaevskii equation II. Preprint.[7℄ F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets. Orbital stability of the blak soliton for theGross-Pitaevskii equation. Indiana Univ. Math. J., 57(6):2611�2642, 2008.[8℄ F. Béthuel and J.-C. Saut. Travelling waves for the Gross-Pitaevskii equation I. Ann. Inst. H.Poinaré Phys. Théor., 70(2):147�238, 1999.[9℄ R. Carles, P. A. Markowih, and C. Sparber. On the Gross-Pitaevskii equation for trappeddipolar quantum gases. Nonlinearity, 21(11):2569�2590, 2008.[10℄ T. Cazenave. Semilinear Shrödinger equations, volume 10 of Courant Leture Notes in Math-ematis. New York University Courant Institute of Mathematial Sienes, New York, 2003.[11℄ C. Coste. Nonlinear Shrödinger equation and super�uid hydrodynamis. Eur. Phys. J. BCondens. Matter Phys., 1(2):245�253, 1998.[12℄ J. Cuevas, B. A. Malomed, P. G. Kevrekidis, and D. J. Frantzeskakis. Solitons in quasi-one-dimensional Bose-Einstein ondensates with ompeting dipolar and loal interations. Phys.Rev. A, 79(5):053608.1�053608.11, 2009.[13℄ B. Deonink and J. N. Kutz. Singular instability of exat stationary solutions of the non-loalGross-Pitaevskii equation. Phys. Lett. A, 319(1-2):97�103, 2003.30



[14℄ R. J. Donnelly, J. A. Donnelly, and R. N. Hills. Spei� heat and dispersion urve for HeliumII. J. Low Temp. Phys., 44(5-6):471�489, 1981.[15℄ G. E. Fasshauer. Meshfree approximation methods with MATLAB, volume 6 of InterdisiplinaryMathematial Sienes.[16℄ R. P. Feynman. Atomi theory of the two-�uid model of liquid Helium. Phys. Rev., 94(2):262�277, 1954.[17℄ C. Gallo. The Cauhy problem for defousing nonlinear Shrödinger equations with non-vanishing initial data at in�nity. Comm. Partial Di�erential Equations, 33(4-6):729�771, 2008.[18℄ P. Gérard. The Gross-Pitaevskii equation in the energy spae. In A. Farina and J.-C. Saut, ed-itors, Stationary and time dependent Gross-Pitaevskii equations. Wolfgang Pauli Institute 2006themati program, January�Deember, 2006, Vienna, Austria, volume 473 of ContemporaryMathematis, pages 129�148. Amerian Mathematial Soiety.[19℄ P. Gérard. The Cauhy problem for the Gross-Pitaevskii equation. Ann. Inst. H. PoinaréAnal. Non Linéaire, 23(5):765�779, 2006.[20℄ L. Grafakos. Classial Fourier analysis, volume 249 ofGraduate Texts in Mathematis. Springer,New York, seond edition, 2008.[21℄ P. Gravejat. Deay for travelling waves in the Gross-Pitaevskii equation. Ann. Inst. H. PoinaréAnal. Non Linéaire, 21(5):591�637, 2004.[22℄ E. Gross. Hydrodynamis of a super�uid ondensate. J. Math. Phys., 4(2):195�207, 1963.[23℄ S. Gustafson, K. Nakanishi, and T.-P. Tsai. Sattering for the Gross-Pitaevskii equation. Math.Res. Lett., 13(2-3):273�285, 2006.[24℄ L. Hörmander. The analysis of linear partial di�erential operators I. Classis in Mathematis.Springer-Verlag, Berlin, 2003.[25℄ C. A. Jones, S. J. Putterman, and P. H. Roberts. Motions in a Bose ondensate V. Stabilityof solitary wave solutions of non-linear Shrödinger equations in two and three dimensions. J.Phys. A, Math. Gen., 19(15):2991�3011, 1986.[26℄ C. A. Jones and P. H. Roberts. Motions in a Bose ondensate IV. Axisymmetri solitary waves.J. Phys. A, Math. Gen., 15(8):2599�2619, 1982.[27℄ C. Josserand, Y. Pomeau, and S. Ria. Coexistene of ordinary elastiity and super�uidity ina model of a defet-free supersolid. Phys. Rev. Lett., 98(19):195301.1�195301.4, 2007.[28℄ Y. S. Kivshar and B. Luther-Davies. Dark optial solitons: physis and appliations. Phys.Rep., 298(2-3):81�197, 1998.[29℄ S. G. Krantz and H. R. Parks. The geometry of domains in spae. Birkhäuser Advaned Texts,Basel Textbooks. Birkhäuser Boston In., Boston, MA, 1999.[30℄ L. Landau. Theory of the super�uidity of Helium II. Phys. Rev., 60(4):356�358, 1941.[31℄ N. N. Lebedev. Speial funtions and their appliations. Revised English edition. Translatedand edited by Rihard A. Silverman. Prentie-Hall In., Englewood Cli�s, N.J., 1965.[32℄ M. Mari³. Traveling waves for nonlinear Shrödinger equations with nonzero onditions atin�nity. Preprint arXiv 0903.0354.[33℄ L. Pitaevskii. Vortex lines in an imperfet Bose gas. Sov. Phys. JETP, 13(2):451�454, 1961.31



[34℄ Y. Pomeau and S. Ria. Model of super�ow with rotons. Phys. Rev. Lett., 71(2):247�250, 1993.[35℄ L. Shwartz. Théorie des distributions. Publiations de l'Institut de Mathématique del'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement orrigée, refondue et aug-mentée. Hermann, Paris, 1966.[36℄ V. S. Shhesnovih and R. A. Kraenkel. Vorties in nonloal Gross-Pitaevskii equation. J.Phys. A, 37(26):6633�6651, 2004.[37℄ E. M. Stein. Singular integrals and di�erentiability properties of funtions. Prineton Methe-matial Series, No. 30. Prineton University Press, 1970.[38℄ S. Yi and L. You. Trapped ondensates of atoms with dipole interations. Phys. Rev. A,63(5):053607.1�053607.14, 2001.

32


