196 research outputs found

    Kinetic Analysis of Discrete Path Sampling Stationary Point Databases

    Full text link
    Analysing stationary point databases to extract phenomenological rate constants can become time-consuming for systems with large potential energy barriers. In the present contribution we analyse several different approaches to this problem. First, we show how the original rate constant prescription within the discrete path sampling approach can be rewritten in terms of committor probabilities. Two alternative formulations are then derived in which the steady-state assumption for intervening minima is removed, providing both a more accurate kinetic analysis, and a measure of whether a two-state description is appropriate. The first approach involves running additional short kinetic Monte Carlo (KMC) trajectories, which are used to calculate waiting times. Here we introduce `leapfrog' moves to second-neighbour minima, which prevent the KMC trajectory oscillating between structures separated by low barriers. In the second approach we successively remove minima from the intervening set, renormalising the branching probabilities and waiting times to preserve the mean first-passage times of interest. Regrouping the local minima appropriately is also shown to speed up the kinetic analysis dramatically at low temperatures. Applications are described where rates are extracted for databases containing tens of thousands of stationary points, with effective barriers that are several hundred times kT.Comment: 28 pages, 1 figure, 4 table

    Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Get PDF
    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results

    Dynamic Disorder in Quasi-Equilibrium Enzymatic Systems

    Get PDF
    Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory

    "One country, two systems": Sociopolitical implications for female migrant sex workers in Hong Kong

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Under the "two countries, one system" policy implemented by China to manage the return of Hong Kong's sovereignty, Hong Kong has maintained a comparatively prosperous economy within the Asian region. This has resulted in an environment which fosters migration from the mainland to Hong Kong, due largely to proximity, higher earning potential, common language, and a relaxing of border control measures. However not all mainland China citizens are equally able to access these new migration schemes and indeed a number of women such as sex workers are either migrating and/or working illegally and without occupational, legal and health protection within Hong Kong.</p> <p>Discussion</p> <p>Female migrant sex workers are exposed to a number of significant threats to their health, however their illegal status contributes to even greater vulnerability. The prevailing discourses which view these women as either "trafficked women" or as "illegal immigrants" do not adequately account for the complex situations which result in such women's employment in Hong Kong's sex industry. Rather, their position can best be understood within the broader frameworks provided by migration literature and the concept of "structural violence". This allows for a greater understanding of the socio-political issues which are systematically denying migrant sex workers adequate access to health care and other opportunities for social advancement. When these issues are taken into account, it becomes clear that the current relevant legislation regarding both immigration and sex work is perpetuating the marginalised and vulnerable status of migrant sex workers. Unless changes are made, structural barriers will remain in place which impede the ability of migrant sex workers to manage their own health needs and status.</p> <p>Conclusion</p> <p>Female migrant sex workers in Hong Kong are extremely vulnerable to a number of occupational health and safety hazards which have significantly detrimental effects on their health. These risks can best be understood within a broad framework of socio-political factors contributing to their vulnerability. Ensuring that migrant sex workers have adequate support for their health and legal rights requires require structural interventions such as decriminalisation and providing open and inclusive access to health service to counteract such factors.</p

    The regularized visible fold revisited

    Full text link
    The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϔ→0\epsilon\rightarrow 0. Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϔ→0\epsilon\rightarrow 0, grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law

    Calculation of molecular thermochemical data and their availability in databases

    Get PDF
    Thermodynamic properties of molecules can be obtained by experiment, by statistical mechanics in conjunction with electronic structure theory and by empirical rules like group additivity. The latter two methods are briefly re-viewed in this chapter. The overview of electronic structure methods is intended for readers less experienced in electronic structure theory and focuses on concepts without going into mathematical details. This is followed by a brief description of group additivity schemes; finally, an overview of databases listing reliable thermochemical data is given

    Full design automation of multi-state RNA devices to program gene expression using energy-based optimization

    Get PDF
    [EN] Small RNAs (sRNAs) can operate as regulatory agents to control protein expression by interaction with the 59 untranslated region of the mRNA. We have developed a physicochemical framework, relying on base pair interaction energies, to design multi-state sRNA devices by solving an optimization problem with an objective function accounting for the stability of the transition and final intermolecular states. Contrary to the analysis of the reaction kinetics of an ensemble of sRNAs, we solve the inverse problem of finding sequences satisfying targeted reactions. We show here that our objective function correlates well with measured riboregulatory activity of a set of mutants. This has enabled the application of the methodology for an extended design of RNA devices with specified behavior, assuming different molecular interaction models based on Watson-Crick interaction. We designed several YES, NOT, AND, and OR logic gates, including the design of combinatorial riboregulators. In sum, our de novo approach provides a new paradigm in synthetic biology to design molecular interaction mechanisms facilitating future high-throughput functional sRNA design.Work supported by the grants FP7-ICT-043338 (BACTOCOM) to AJ, and BIO2011-26741 (Ministerio de Economia y Competitividad, Spain) to JAD. GR is supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011), and TEL by a PhD fellowship from the AXA Research Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Landrain, TE.; Majer, E.; Daros Arnau, JA.; Jaramillo, A. (2013). Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Computational Biology. 9(8):1003172-1003172. https://doi.org/10.1371/journal.pcbi.1003172S1003172100317298Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D., & Arkin, A. P. (2011). Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the National Academy of Sciences, 108(21), 8617-8622. doi:10.1073/pnas.1015741108Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B., & Arkin, A. P. (2012). Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 8(5), 447-454. doi:10.1038/nchembio.919Bayer, T. S., & Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337-343. doi:10.1038/nbt1069Nakashima, N., & Tamura, T. (2009). Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Research, 37(15), e103-e103. doi:10.1093/nar/gkp498Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855. doi:10.1073/pnas.1203808109Beisel, C. L., Bayer, T. S., Hoff, K. G., & Smolke, C. D. (2008). Model‐guided design of ligand‐regulated RNAi for programmable control of gene expression. Molecular Systems Biology, 4(1), 224. doi:10.1038/msb.2008.62Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168Carothers, J. M., Goler, J. A., Juminaga, D., & Keasling, J. D. (2011). Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science, 334(6063), 1716-1719. doi:10.1126/science.1212209Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271-15276. doi:10.1073/pnas.1203831109Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1575(1-3), 15-25. doi:10.1016/s0167-4781(02)00280-4Majdalani, N., Vanderpool, C. K., & Gottesman, S. (2005). Bacterial Small RNA Regulators. Critical Reviews in Biochemistry and Molecular Biology, 40(2), 93-113. doi:10.1080/10409230590918702Selinger, D. W., Cheung, K. J., Mei, R., Johansson, E. M., Richmond, C. S., Blattner, F. R., 
 Church, G. M. (2000). RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnology, 18(12), 1262-1268. doi:10.1038/82367Yelin, R., Dahary, D., Sorek, R., Levanon, E. Y., Goldstein, O., Shoshan, A., 
 Rotman, G. (2003). Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology, 21(4), 379-386. doi:10.1038/nbt808Wang, X.-J., Gaasterland, T., & Chua, N.-H. (2005). Genome Biology, 6(4), R30. doi:10.1186/gb-2005-6-4-r30Stojanovic, M. N., & Stefanovic, D. (2003). A deoxyribozyme-based molecular automaton. Nature Biotechnology, 21(9), 1069-1074. doi:10.1038/nbt862Seelig, G., Soloveichik, D., Zhang, D. Y., & Winfree, E. (2006). Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(5805), 1585-1588. doi:10.1126/science.1132493Yin, P., Choi, H. M. T., Calvert, C. R., & Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318-322. doi:10.1038/nature06451Ran, T., Kaplan, S., & Shapiro, E. (2009). Molecular implementation of simple logic programs. Nature Nanotechnology, 4(10), 642-648. doi:10.1038/nnano.2009.203Penchovsky, R., & Breaker, R. R. (2005). Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnology, 23(11), 1424-1433. doi:10.1038/nbt1155Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27(10), 946-950. doi:10.1038/nbt.1568Laidler, K. J., & King, M. C. (1983). Development of transition-state theory. The Journal of Physical Chemistry, 87(15), 2657-2664. doi:10.1021/j100238a002Sosnick, T. R., & Pan, T. (2003). RNA folding: models and perspectives. Current Opinion in Structural Biology, 13(3), 309-316. doi:10.1016/s0959-440x(03)00066-6Yurke, B. (2003). Genetic Programming and Evolvable Machines, 4(2), 111-122. doi:10.1023/a:1023928811651Bandyra, K. J., Said, N., Pfeiffer, V., GĂłrna, M. W., Vogel, J., & Luisi, B. F. (2012). The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Molecular Cell, 47(6), 943-953. doi:10.1016/j.molcel.2012.07.015Dawid, A., Cayrol, B., & Isambert, H. (2009). RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation. Physical Biology, 6(2), 025007. doi:10.1088/1478-3975/6/2/025007Lioliou, E., Romilly, C., Romby, P., & Fechter, P. (2010). RNA-mediated regulation in bacteria: from natural to artificial systems. New Biotechnology, 27(3), 222-235. doi:10.1016/j.nbt.2010.03.002Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., & Pierce, N. A. (2007). Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review, 49(1), 65-88. doi:10.1137/060651100Das, R., Karanicolas, J., & Baker, D. (2010). Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 7(4), 291-294. doi:10.1038/nmeth.1433Vogel, J., & Luisi, B. F. (2011). Hfq and its constellation of RNA. Nature Reviews Microbiology, 9(8), 578-589. doi:10.1038/nrmicro2615Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J. (2009). Synthetic Gene Networks That Count. Science, 324(5931), 1199-1202. doi:10.1126/science.1172005Rodrigo, G., Carrera, J., Landrain, T. E., & Jaramillo, A. (2012). Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Letters, 586(15), 2037-2042. doi:10.1016/j.febslet.2012.02.031Chin, J. W. (2006). Modular approaches to expanding the functions of living matter. Nature Chemical Biology, 2(6), 304-311. doi:10.1038/nchembio789McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105-1119. doi:10.1002/bip.360290621Chitsaz, H., Salari, R., Sahinalp, S. C., & Backofen, R. (2009). A partition function algorithm for interacting nucleic acid strands. Bioinformatics, 25(12), i365-i373. doi:10.1093/bioinformatics/btp212Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte fïżœr Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163Andronescu, M., Zhang, Z. C., & Condon, A. (2005). Secondary Structure Prediction of Interacting RNA Molecules. Journal of Molecular Biology, 345(5), 987-1001. doi:10.1016/j.jmb.2004.10.082Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.67

    The Potential Energy Surface in Molecular Quantum Mechanics

    Full text link
    The idea of a Potential Energy Surface (PES) forms the basis of almost all accounts of the mechanisms of chemical reactions, and much of theoretical molecular spectroscopy. It is assumed that, in principle, the PES can be calculated by means of clamped-nuclei electronic structure calculations based upon the Schr\"{o}dinger Coulomb Hamiltonian. This article is devoted to a discussion of the origin of the idea, its development in the context of the Old Quantum Theory, and its present status in the quantum mechanics of molecules. It is argued that its present status must be regarded as uncertain.Comment: 18 pages, Proceedings of QSCP-XVII, Turku, Finland 201
    • 

    corecore