235 research outputs found

    Tight Competitive Analyses of Online Car-Sharing Problems

    Get PDF
    The car-sharing problem, proposed by Luo, Erlebach and Xu in 2018, mainly focuses on an online model in which there are two locations: 0 and 1, and kk total cars. Each request which specifies its pick-up time and pick-up location (among 0 and 1, and the other is the drop-off location) is released in each stage a fixed amount of time before its specified start (i.e. pick-up) time. The time between the booking (i.e. released) time and the start time is enough to move empty cars between 0 and 1 for relocation if they are not used in that stage. The model, called kkS2L-F, assumes that requests in each stage arrive sequentially regardless of the same booking time and the decision (accept or reject) must be made immediately. The goal is to accept as many requests as possible. In spite of only two locations, the analysis does not seem easy and the (tight) competitive ratio (CR) is only known to be 2.0 for k=2k=2 and 1.5 for a restricted value of kk, i.e., a multiple of three. In this paper, we remove all the holes of unknown CR's; namely we prove that the CR is 2kk+k/3\frac{2k}{k + \lfloor k/3 \rfloor} for all k2k\geq 2. Furthermore, if the algorithm can delay its decision until all requests have come in each stage, the CR is improved to roughly 4/3. We can take this advantage even further, precisely we can achieve a CR of 2+R3\frac{2+R}{3} if the number of requests in each stage is at most RkRk, 1R21 \leq R \leq 2, where we do not have to know the value of RR in advance. Finally we demonstrate that randomization also helps to get (slightly) better CR's

    Dendrobium officinale

    Get PDF
    Background. Dendrobium officinale (DO) Kimura et Migo is a precious Chinese herb that is considered beneficial for health due to its antioxidant and antidiabetes properties, and so on. In this research, we try to determine the preventive effect of DO on the early complications of STZ-induced diabetic rats. Methods. Type 1 diabetic rats were produced with a single intraperitoneal injection of STZ (50 mg/kg). DO (1 g/kg/day) was then orally administered for 5 weeks. Blood glucose, TC, TG, BUN, CREA, and GSH-PX levels were determined, and electroretinographic activity and hypoalgesia were investigated. Pathological sections of the eyes, hearts, aortas, kidneys, and livers were analyzed. Results. Treatment with DO significantly attenuated the serum levels of TC, TG, BUN, and CREA, markedly increased the amplitudes of ERG a- and b-waves and Ops, and reduced the hypoalgesia and histopathological changes of vital organs induced by hyperglycemia. The protective effect of DO in diabetic rats may be associated with its antioxidant activity, as evidenced by the marked increase in the serum level of glutathione peroxidase. However, DO had no significant effect on blood glucose levels and bodyweight of diabetic rats. Conclusions. DO supplementation is an effective treatment to prevent STZ-induced diabetic complications

    Inhibition of Anchorage-Independent Proliferation and G0/G1 Cell-Cycle Regulation in Human Colorectal Carcinoma Cells by 4,7-Dimethoxy-5-Methyl-l,3-Benzodioxole Isolated from the Fruiting Body of Antrodia camphorate

    Get PDF
    In this study, 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1) was isolated from three different sources of dried fruiting bodies of Antrodia camphorate (AC). AC is a medicinal mushroom that grows on the inner heartwood wall of Cinnamomum kanehirai Hay (Lauraceae), an endemic species that is used in Chinese medicine for its anti-tumor and immunomodulatory properties. In this study, we demonstrated that SY-1 profoundly decreased the proliferation of human colon cancer cells (COLO 205) through G0/G1 cell-cycle arrest (50–150 μM) and induction of apoptosis (>150 μM). Cell-cycle arrest induced by SY-1 was associated with a significant increase in levels of p53, p21/Cip1 and p27/Kip1, and a decrease in cyclins D1, D3 and A. In contrast, SY-1 treatment did not induce significant changes in G0/G1 phase cell-cycle regulatory proteins in normal human colonic epithelial cells (FHC). The cells were cultured in soft agar to evaluate anchorage-independent colony formation, and we found that the number of transformed colonies was significantly reduced in the SY-1-treated COLO 205 cells. These findings demonstrate for the first time that SY-1 inhibits human colon cancer cell proliferation through inhibition of cell growth and anchorage-independent colony formation in soft agar. However, the detailed mechanisms of these processes remain unclear and will require further investigation

    Local Magnetic Field Role in Star Formation

    Get PDF
    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.Comment: 4 pages, 3 figures; to appear in the EAS Proceedings of the 6th Zermatt ISM Symposium "Conditions and Impact of Star Formation from Lab to Space", September 201

    Magnetic Fields and Massive Star Formation

    Full text link
    Massive stars (M>8M > 8 \msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μ\mum obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of \lsim 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 4040^\circ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (\lsim 10^3 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scale of 0.01 - 0.1 pc in the context of massive star and cluster star formation.Comment: Accepted for publication in Astrophysical Journa

    Multi-scale physical properties of NGC 6334 as revealed by local relative orientations between magnetic fields, density gradients, velocity gradients, and gravity

    Get PDF
    We present ALMA dust polarization and molecular line observations toward 4 clumps (I(N), I, IV, and V) in the massive star-forming region NGC 6334. In conjunction with large-scale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields (θB\theta_{\mathrm{B}}), column density gradients (θNG\theta_{\mathrm{NG}}), local gravity (θLG\theta_{\mathrm{LG}}), and velocity gradients (θVG\theta_{\mathrm{VG}}) to investigate the multi-scale (from \sim30 pc to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation between θB\theta_{\mathrm{B}} and θNG\theta_{\mathrm{NG}} changes from statistically more perpendicular to parallel as column density (NH2N_{\mathrm{H_2}}) increases, which is a signature of trans-to-sub-Alfv\'{e}nic turbulence at complex/cloud scales as revealed by previous numerical studies. Because θNG\theta_{\mathrm{NG}} and θLG\theta_{\mathrm{LG}} are preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment between θB\theta_{\mathrm{B}} and θNG\theta_{\mathrm{NG}} at higher NH2N_{\mathrm{H_2}} is because the magnetic field line is dragged by gravity. At even higher NH2N_{\mathrm{H_2}}, the angle between θB\theta_{\mathrm{B}} and θNG\theta_{\mathrm{NG}} or θLG\theta_{\mathrm{LG}} transits back to having no preferred orientation or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found between θB\theta_{\mathrm{B}} and θVG\theta_{\mathrm{VG}} throughout our studied NH2N_{\mathrm{H_2}} range, which indicates a trans-to-sub-Alfv\'{e}nic state at small scales as well. The normalised mass-to-flux ratio derived from the polarization-intensity gradient (KTH) method increases with NH2N_{\mathrm{H_2}}.Comment: 35 pages, 18 figures. Accepted by Ap

    The Relation Between Brain Amyloid Deposition, Cortical Atrophy, and Plasma Biomarkers in Amnesic Mild Cognitive Impairment and Alzheimer’s Disease

    Get PDF
    Background: Neuritic plaques and neurofibrillary tangles are the pathological hallmarks of Alzheimer’s disease (AD), while the role of brain amyloid deposition in the clinical manifestation or brain atrophy remains unresolved. We aimed to explore the relation between brain amyloid deposition, cortical thickness, and plasma biomarkers.Methods: We used 11C-Pittsburgh compound B-positron emission tomography to assay brain amyloid deposition, magnetic resonance imaging to estimate cortical thickness, and an immunomagnetic reduction assay to measure plasma biomarkers. We recruited 39 controls, 25 subjects with amnesic mild cognitive impairment (aMCI), and 16 subjects with AD. PiB positivity (PiB+) was defined by the upper limit of the 95% confidence interval of the mean cortical SUVR from six predefined regions (1.0511 in this study).Results: All plasma biomarkers showed significant between-group differences. The plasma Aβ40 level was positively correlated with the mean cortical thickness of both the PiB+ and PiB- subjects. The plasma Aβ40 level of the subjects who were PiB+ was negatively correlated with brain amyloid deposition. In addition, the plasma tau level was negatively correlated with cortical thickness in both the PiB+ and PiB- subjects. Moreover, cortical thickness was negatively correlated with brain amyloid deposition in the PiB+ subjects. In addition, the cut-off point of plasma tau for differentiating between controls and AD was higher in the PiB- group than in the PiB+ group (37.5 versus 25.6 pg/ml, respectively). Lastly, ApoE4 increased the PiB+ rate in the aMCI and control groups.Conclusion: The contributions of brain amyloid deposition to cortical atrophy are spatially distinct. Plasma Aβ40 might be a protective indicator of less brain amyloid deposition and cortical atrophy. It takes more tau pathology to reach the same level of cognitive decline in subjects without brain amyloid deposition, and ApoE4 plays an early role in amyloid pathogenesis
    corecore