588 research outputs found

    Divergent Antibody Subclass and Specificity Profiles but Not Protective HLA-B Alleles Are Associated with Variable Antibody Effector Function among HIV-1 Controllers

    Get PDF
    Understanding the coordination between humoral and cellular immune responses may be the key to developing protective vaccines, and because genetic studies of long-term HIV-1 nonprogressors have associated specific HLA-B alleles with spontaneous control of viral replication, this subject group presents an opportunity to investigate relationships between arms of the adaptive immune system. Given evidence suggesting that cellular immunity may play a role in viral suppression, we sought to determine whether and how the humoral immune response might vary among controllers. Significantly, Fc-mediated antibody effector functions have likewise been associated with durable viral control. In this study, we compared the effector function and biophysical features of HIV-specific antibodies in a cohort of controllers with and without protective HLA-B alleles in order to investigate whether there was evidence for multiple paths to HIV-1 control, or whether cellular and humoral arms of immunity might exhibit coordinated profiles. However, with the exception of IgG2 antibodies to gp41, HLA status was not associated with divergent humoral responses. This finding did not result from uniform antibody responses across subjects, as controllers could be regrouped according to strong differences in their HIV-specific antibody subclass specificity profiles. These divergent antibody profiles were further associated with significant differences in nonneutralizing antibody effector function, with levels of HIV-specific IgG1 acting as the major distinguishing factor. Thus, while HLA background among controllers was associated with minimal differences in humoral function, antibody subclass and specificity profiles were associated with divergent effector function, suggesting that these features could be used to make functional predictions. Because these nonneutralizing antibody activities have been associated with spontaneous viral control, reduced viral load, and nonprogression in infected subjects and protection in vaccinated subjects, understanding the specific features of IgGs with potentiated effector function may be critical to vaccine and therapeutic antibody development

    The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    Get PDF
    We report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which we compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R = 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), we empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km/s, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. We estimate random errors for lower S/N spectra based on numerical simulations.Comment: 37 pages, 6 tables, 6 figures, submitted to the Astronomical Journa

    Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization.

    Get PDF
    Histone methylation regulates normal stem cell fate decisions through a coordinated interplay between histone methyltransferases and demethylases at lineage specific genes. Malignant transformation is associated with aberrant accumulation of repressive histone modifications, such as polycomb mediated histone 3 lysine 27 (H3K27me3) resulting in a histone methylation mediated block to differentiation. The relevance, however, of histone demethylases in cancer remains less clear. We report that JMJD3, a H3K27me3 demethylase, is induced during differentiation of glioblastoma stem cells (GSCs), where it promotes a differentiation-like phenotype via chromatin dependent (INK4A/ARF locus activation) and chromatin independent (nuclear p53 protein stabilization) mechanisms. Our findings indicate that deregulation of JMJD3 may contribute to gliomagenesis via inhibition of the p53 pathway resulting in a block to terminal differentiation

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    F- and G-Actin Concentrations in Lamellipodia of Moving Cells

    Get PDF
    Cells protrude by polymerizing monomeric (G) into polymeric (F) actin at the tip of the lamellipodium. Actin filaments are depolymerized towards the rear of the lamellipodium in a treadmilling process, thereby supplementing a G-actin pool for a new round of polymerization. In this scenario the concentrations of F- and G-actin are principal parameters, but have hitherto not been directly determined. By comparing fluorescence intensities of bleached and unbleached regions of lamellipodia in B16-F1 mouse melanoma cells expressing EGFP-actin, before and after extraction with Triton X-100, we show that the ratio of F- to G-actin is 3.2+/−0.9. Using electron microscopy to determine the F-actin content, this ratio translates into F- and G-actin concentrations in lamellipodia of approximately 500 µM and 150 µM, respectively. The excess of G-actin, at several orders of magnitude above the critical concentrations at filament ends indicates that the polymerization rate is not limited by diffusion and is tightly controlled by polymerization/depolymerization modulators

    Rotation of planet-harbouring stars

    Full text link
    The rotation rate of a star has important implications for the detectability, characterisation and stability of any planets that may be orbiting it. This chapter gives a brief overview of stellar rotation before describing the methods used to measure the rotation periods of planet host stars, the factors affecting the evolution of a star's rotation rate, stellar age estimates based on rotation, and an overview of the observed trends in the rotation properties of stars with planets.Comment: 16 pages, 4 figures: Invited review to appear in 'Handbook of Exoplanets', Springer Reference Works, edited by Hans J. Deeg and Juan Antonio Belmont

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore