31,369 research outputs found

    Two-dimensional viscous flow computations of hypersonic scramjet nozzle flowfields at design and off-design conditions

    Get PDF
    The PARC2D code has been selected to analyze the flowfields of a representative hypersonic scramjet nozzle over a range of flight conditions from Mach 3 to 20. The flowfields, wall pressures, wall skin friction values, heat transfer values and overall nozzle performance are presented

    Viscous three-dimensional analyses for nozzles for hypersonic propulsion

    Get PDF
    A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure

    Improved targeted outdoor advertising based on geotagged social media data

    Get PDF
    With as many as 4 million passenger journeys within the London Underground system every weekday, the advertisement spaces across the stations hold considerable potential. However, the planning of specific advertisements across time and space is difficult to optimize as little is known about passers-by. Therefore, in order to generate detailed and quantifiable spatio-temporal information which is particular to each station area, we have explored local social media data. This research demonstrates how local interests can be mined from geotagged Tweets by using Latent Dirichlet Allocation, an unsupervised topic modelling method. The relative popularity of each of the key topics is then explored spatially and temporally between the station areas. Overall, this research demonstrates the value of using Geographical Information System and text-mining techniques to generate valuable spatio-temporal information on popular interests from Twitter data

    Dissipative chaotic scattering

    Get PDF
    We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte

    Black Hole Production by Cosmic Rays

    Full text link
    Ultra-high energy cosmic rays create black holes in scenarios with extra dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce black holes deep in the atmosphere, initiating quasi-horizontal showers far above the standard model rate. At the Auger Observatory, hundreds of black hole events may be observed, providing evidence for extra dimensions and the first opportunity for experimental study of microscopic black holes. If no black holes are found, the fundamental Planck scale must be above 2 TeV for any number of extra dimensions.Comment: 4 pages, 4 figures, PRL versio

    General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars

    Get PDF
    We analyze the coupling between the internal degrees of freedom of neutron stars in a close binary, and the stars' orbital motion. Our analysis is based on the method of matched asymptotic expansions and is valid to all orders in the strength of internal gravity in each star, but is perturbative in the ``tidal expansion parameter'' (stellar radius)/(orbital separation). At first order in the tidal expansion parameter, we show that the internal structure of each star is unaffected by its companion, in agreement with post-1-Newtonian results of Wiseman (gr-qc/9704018). We also show that relativistic interactions that scale as higher powers of the tidal expansion parameter produce qualitatively similar effects to their Newtonian counterparts: there are corrections to the Newtonian tidal distortion of each star, both of which occur at third order in the tidal expansion parameter, and there are corrections to the Newtonian decrease in central density of each star (Newtonian ``tidal stabilization''), both of which are sixth order in the tidal expansion parameter. There are additional interactions with no Newtonian analogs, but these do not change the central density of each star up to sixth order in the tidal expansion parameter. These results, in combination with previous analyses of Newtonian tidal interactions, indicate that (i) there are no large general-relativistic crushing forces that could cause the stars to collapse to black holes prior to the dynamical orbital instability, and (ii) the conventional wisdom with respect to coalescing binary neutron stars as sources of gravitational-wave bursts is correct: namely, the finite-stellar-size corrections to the gravitational waveform will be unimportant for the purpose of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result unchange

    Binary Induced Neutron-Star Compression, Heating, and Collapse

    Get PDF
    We analyze several aspects of the recently noted neutron star collapse instability in close binary systems. We utilize (3+1) dimensional and spherical numerical general relativistic hydrodynamics to study the origin, evolution, and parametric sensitivity of this instability. We derive the modified conditions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the possible interior heating and associated neutrino luminosity which could be generated as the stars gradually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also discussed.Comment: 17 pages, 7 figure

    Carbon and Strontium Abundances of Metal-Poor Stars

    Full text link
    We present carbon and strontium abundances for 100 metal-poor stars measured from R\sim 7000 spectra obtained with the Echellette Spectrograph and Imager at the Keck Observatory. Using spectral synthesis of the G-band region, we have derived carbon abundances for stars ranging from [Fe/H]=1.3=-1.3 to [Fe/H]=3.8=-3.8. The formal errors are 0.2\sim 0.2 dex in [C/Fe]. The strontium abundance in these stars was measured using spectral synthesis of the resonance line at 4215 {\AA}. Using these two abundance measurments along with the barium abundances from our previous study of these stars, we show it is possible to identify neutron-capture-rich stars with our spectra. We find, as in other studies, a large scatter in [C/Fe] below [Fe/H]=2 = -2. Of the stars with [Fe/H]<2<-2, 9±\pm4% can be classified as carbon-rich metal-poor stars. The Sr and Ba abundances show that three of the carbon-rich stars are neutron-capture-rich, while two have normal Ba and Sr. This fraction of carbon enhanced stars is consistent with other studies that include this metallicity range.Comment: ApJ, Accepte
    corecore