1,237 research outputs found

    Highlights from PHENIX II: Exploring the QCD medium

    Full text link
    Much of the present experimental effort at RHIC is now directed towards understanding the properties of the hot and dense colored medium created in A+A collisions. Recent results from PHENIX on the dynamical evolution of the medium and its response to high momentum probes are presented, and their impact on our overall understanding of heavy-ion collisions is discussed.Comment: 8 pages, 6 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee. Revised versio

    Melatonin ultrastructural localization in mitochondria of human salivary glands

    Get PDF
    The hormone melatonin was initially believed to be synthesized exclusively by the pineal gland and the enterochromaffin cells, but nowadays its production and distribution were observed in several other tissues and organs. Among others, the ultrastructural localization of melatonin and its receptors has been reported in human salivary glands. In these glands, the fine localization of melatonin in intracellular organelles, above all in mitochondria, remains to be explored comprehensively. Bioptic samples of parotid and submandibular glands were treated to search for melatonin using the immunogold staining method by transmission electron microscopy. Morphometric analysis was applied to micrographs. The results indicated that, both in parotid and submandibular glands mitochondria, a certain melatonin positivity was present. Within glandular cells, melatonin was less retrieved in mitochondria than in secretory granules; however, its presence in this organelle was clearly evident. Inside striated duct cells, melatonin staining in mitochondria was more prominent than in glandular cells. Our data provide an ultrastructural report on the presence of melatonin in mitochondria of human major salivary glands and represent a fundamental prerequisite for a better understanding of the melatonin role in this organelle

    A tension approach to controlling the shape of cubic spline surfaces on FVS triangulations

    Get PDF
    We propose a parametric tensioned version of the FVS macro-element to control the shape of the composite surface and remove artificial oscillations, bumps and other undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces over a four-directional mesh produced by two-stage scattered data fitting methods

    Clinical and Social Outcomes five years after closing a mental hospital: a trial of cognitive behavioural interventions

    Get PDF
    BACKGROUND: To investigate the outcome of patients transferred from hospital to community care in Como, Italy after 6 months intensive psychosocial rehabilitation prior to discharge. METHOD: All 149 residents with a primary psychiatric diagnosis were assigned to receive either a 6-month pre-discharge course of goal-oriented rehabilitation, (IT), or routine management, (RT). BPRS and GAF ratings were made by blind, independent assessors before and at 12, 24, 36, 48, and 60 months after discharge and the results examined with repeated measures analysis of variance. RESULTS: Overall change in residence was achieved without any major detriment to the health and welfare of most patients. The cohort of patients who received intensive rehabilitation, (IT), prior to discharge showed significantly lower impairment and disability throughout the five years compared to the cohort receiving routine management, (RT), prior to discharge. Total BPRS scores remained significant when initial differences in the cohorts were covaried, whereas GAF failed to remain significant (p = 0.051). CONCLUSION: The treatment provided prior to transfer from long-stay hospital to community residence may have long-term clinical benefits for chronically disabled patients

    Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the ORS spine section

    Full text link
    Background Rats are a widely accepted preclinical model for evaluating intervertebral disc (IVD) degeneration and regeneration. IVD morphology is commonly assessed using histology, which forms the foundation for quantifying the state of IVD degeneration. IVD degeneration severity is evaluated using different grading systems that focus on distinct degenerative features. A standard grading system would facilitate more accurate comparison across laboratories and more robust comparisons of different models and interventions. Aims This study aimed to develop a histology grading system to quantify IVD degeneration for different rat models. Materials & Methods This study involved a literature review, a survey of experts in the field, and a validation study using 25 slides that were scored by 15 graders from different international institutes to determine inter- and intra-rater reliability. Results A new IVD degeneration grading system was established and it consists of eight significant degenerative features, including nucleus pulposus (NP) shape, NP area, NP cell number, NP cell morphology, annulus fibrosus (AF) lamellar organization, AF tears/fissures/disruptions, NP-AF border appearance, as well as endplate disruptions/microfractures and osteophyte/ossification. The validation study indicated this system was easily adopted, and able to discern different severities of degenerative changes from different rat IVD degeneration models with high reproducibility for both experienced and inexperienced graders. In addition, a widely-accepted protocol for histological preparation of rat IVD samples based on the survey findings include paraffin embedding, sagittal orientation, section thickness < 10 μm, and staining using H&E and/or SO/FG to facilitate comparison across laboratories. Conclusion The proposed histological preparation protocol and grading system provide a platform for more precise comparisons and more robust evaluation of rat IVD degeneration models and interventions across laboratories

    Novel aspects of iron homeostasis in pathogenic bloodstream form Trypanosoma brucei

    Get PDF
    Iron is an essential regulatory signal for virulence factors in many pathogens. Mammals and bloodstream form (BSF) Trypanosoma brucei obtain iron by receptor-mediated endocytosis of transferrin bound to receptors (TfR) but the mechanisms by which T. brucei subsequently handles iron remains enigmatic. Here, we analyse the transcriptome of T. brucei cultured in iron-rich and iron-poor conditions. We show that adaptation to iron-deprivation induces upregulation of TfR, a cohort of parasite-specific genes (ESAG3, PAGS), genes involved in glucose uptake and glycolysis (THT1 and hexokinase), endocytosis (Phosphatidic Acid Phosphatase, PAP2), and most notably a divergent RNA binding protein RBP5, indicative of a non-canonical mechanism for regulating intracellular iron levels. We show that cells depleted of TfR by RNA silencing import free iron as a compensatory survival strategy. The TfR and RBP5 iron response are reversible by genetic complementation, the response kinetics are similar, but the regulatory mechanisms are distinct. Increased TfR protein is due to increased mRNA. Increased RBP5 expression, however, occurs by a post-transcriptional feedback mechanism whereby RBP5 interacts with its own, and with PAP2 mRNAs. Further observations suggest that increased RBP5 expression in iron-deprived cells has a maximum threshold as ectopic overexpression above this threshold disrupts normal cell cycle progression resulting in an accumulation of anucleate cells and cells in G2/M phase. This phenotype is not observed with overexpression of RPB5 containing a point mutation (F61A) in its single RNA Recognition Motif. Our experiments shed new light on how T. brucei BSFs reorganise their transcriptome to deal with iron stress revealing the first iron responsive RNA binding protein that is co-regulated with TfR, is important for cell viability and iron homeostasis; two essential processes for successful proliferation

    Male and Female Mitochondria Respond Differently after Exercising in Acute Hypoxia

    Get PDF
    The use of hypoxic devices among athletes who train in normobaric hypoxia has become increasingly popular; however, the acute effects on heart and brain metabolism are not yet fully understood. This study aimed to investigate the mitochondrial bioenergetics in trained male and female Wistar rats after acute hypoxia training. The experimental plan included exercising for 30 min on a treadmill in a Plexiglas cage connected to a hypoxic generator set at 12.5% O2 or in normoxia. After the exercise, the rats were sacrificed, and their mitochondria were isolated from their brains and hearts. The bioenergetics for each complex of the electron transport chain was tested using a Clarktype electrode. The results showed that following hypoxia training, females experienced impaired oxidative phosphorylation through complex II in heart subsarcolemmal mitochondria, while males had an altered ADP/O in heart interfibrillar mitochondria, without any change in oxidative capacity. No differences from controls were evident in the brain, but an increased electron transport system efficiency was observed with complex I and IV substrates in males. Therefore, the study’s findings suggest that hypoxia training affects the heart mitochondria of females more than males. This raises a cautionary flag for female athletes who use hypoxic devices

    Tissue-Resident CD169+ Macrophages Form a Crucial Front Line against Plasmodium Infection

    Get PDF
    SummaryTissue macrophages exhibit diverse functions, ranging from the maintenance of tissue homeostasis, including clearance of senescent erythrocytes and cell debris, to modulation of inflammation and immunity. Their contribution to the control of blood-stage malaria remains unclear. Here, we show that in the absence of tissue-resident CD169+ macrophages, Plasmodium berghei ANKA (PbA) infection results in significantly increased parasite sequestration, leading to vascular occlusion and leakage and augmented tissue deposition of the malarial pigment hemozoin. This leads to widespread tissue damage culminating in multiple organ inflammation. Thus, the capacity of CD169+ macrophages to contain the parasite burden and its sequestration into different tissues and to limit infection-induced inflammation is crucial to mitigating Plasmodium infection and pathogenesis

    Mesostructured γ-Al2O3-Based Bifunctional Catalysts for Direct Synthesis of Dimethyl Ether from CO2

    Get PDF
    In this work, we propose two bifunctional nanocomposite catalysts based on acidic mesostructured γ-Al2O3 and a Cu/ZnO/ZrO2 redox phase. γ-Al2O3 was synthesized by an Evaporation-Induced Self-Assembly (EISA) method using two different templating agents (block copolymers Pluronic P123 and F127) and subsequently functionalized with the redox phase using an impregnation method modified with a self-combustion reaction. These nanocomposite catalysts and their corresponding mesostructured supports were characterized in terms of structural, textural, and morphological features as well as their acidic properties. The bifunctional catalysts were tested for the CO2-to-DME process, and their performances were compared with a physical mixture consisting of the most promising support as a dehydration catalyst together with the most common Cu-based commercial redox catalyst (CZA). The results highlight that the most appropriate Pluronic for the synthesis of γ-Al2O3 is P123; the use of this templating agent allows us to obtain a mesostructure with a smaller pore size and a higher number of acid sites. Furthermore, the corresponding composite catalyst shows a better dispersion of the redox phase and, consequently, a higher CO2 conversion. However, the incorporation of the redox phase into the porous structure of the acidic support (chemical mixing), favoring an intimate contact between the two phases, has detrimental effects on the dehydration performances due to the coverage of the acid sites with the redox nanophase. On the other hand, the strategy involving the physical mixing of the two phases, distinctly preserving the two catalytic functions, assures better performances.MIUR—National Program PON Ricerca e InnovazioneUniversity of CagliariFondazione di Sardegna (FdS)Regional Government of Sardinia ASSET projectPeer Reviewe

    Coordination polymers and polygons using di-pyridyl-thiadiazole spacers and substituted phosphorodithioato NiII complexes: potential and limitations for inorganic crystal engineering

    No full text
    Coordinatively unsaturated P-substituted dithiophosphonato, dithiophosphato, and dithiophosphito complexes {[Ni?(MeO)2PS2)2] (1), [Ni((EtO)2PS2)2] (2), [Ni(MeOdtp)2] (3), and [Ni((Ph)2PS2)2] (4)} were reacted with the bis-functional ligands 3,5-di-(4-pyridyl)-1,2,4-thiadiazole (L1) and 3,5-di-(3-pyridyl)-1,2,4-thiadiazole (L2) to give the coordination polymers (1–4·L1)?, (3·L2)?, and (4·L2·2C7H8)? and the discrete dimers (1–2·L2)2, all characterised by single crystal X-ray diffraction. A comparison of the structures shows that L1 can be exploited for the predictable assembly of undulating chains independent of the nature of the NiII complex, while L2 allows for the existence of different supramolecular constructs ensuing from different ligand conformations deriving from the rotation of the pyridyl rings
    corecore