48 research outputs found

    PatentMatrix: an automated tool to survey patents related to large sets of genes or proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of patents associated with genes and proteins and the amount of information contained in each patent often present a real obstacle to the rapid evaluation of the novelty of findings associated to genes from an intellectual property (IP) perspective. This assessment, normally carried out by expert patent professionals, can therefore become cumbersome and time consuming. Here we present PatentMatrix, a novel software tool for the automated analysis of patent sequence text entries.</p> <p>Methods and Results</p> <p>PatentMatrix is written in the Awk language and requires installation of the Derwent GENESEQ™ patent sequence database under the sequence retrieval system SRS.</p> <p>The software works by taking as input two files: i) a list of genes or proteins with the associated GENESEQ™ patent sequence accession numbers ii) a list of keywords describing the research context of interest (e.g. 'lung', 'cancer', 'therapeutics', 'diagnostics'). The GENESEQ™ database is interrogated through the SRS system and each patent entry of interest is screened for the occurrence of user-defined keywords. Moreover, the software extracts the basic information useful for a preliminary assessment of the IP coverage of each patent from the GENESEQ™ database. As output, two tab-delimited files are generated which provide the user with a detailed and an aggregated view of the results.</p> <p>An example is given where the IP position of five genes is evaluated in the context of 'development of antibodies for cancer treatment'</p> <p>Conclusion</p> <p>PatentMatrix allows a rapid survey of patents associated with genes or proteins in a particular area of interest as defined by keywords. It can be efficiently used to evaluate the IP-related novelty of scientific findings and to rank genes or proteins according to their IP position.</p

    Phylogenetic and Functional Metagenomic Profiling for Assessing Microbial Biodiversity in Environmental Monitoring

    Get PDF
    Environmental management decisions have to base on holistic understanding of biodiversity and functional capability in ecosystems. Environmental metagenomics is an emerging and powerful approach allowing rapidly and reliably determine and compare microbial biodiversity and functional profiles. Advances in next generation sequencing technologies and bioinformatic tools allow set up analysis pipelines which are useful for well designed and targeted monitoring exercises already today. In the paper we demonstrate how direct sequencing of the total community DNA and analysis of the data are applicable to assess anthropogenic impact on the coastal marine ecosystems.JRC.H.1-Water Resource

    A novel de novo TBX5 mutation in a patient with Holt-Oram syndrome leading to a dramatically reduced biological function

    Get PDF
    BACKGROUND: The Holt-Oram syndrome (HOS) is an autosomal dominant disorder affecting 1/100.000 live births. It is defined by upper limb anomalies and congenital heart defects with variable severity. We describe a dramatic phenotype of a male, 15-month-old patient being investigated for strict diagnostic criteria of HOS. ----- METHODS AND RESULTS: Genetic analysis revealed a so far unpublished TBX5 mutation, which occurs de novo in the patient with healthy parents. TBX5 belongs to the large family of T-box transcription factors playing major roles in morphogenesis and cell-type specification. The mutation located in the DNA-binding domain at position 920 (C→A) leads to an amino acid change at position 85 (proline → threonine). Three-dimensional analysis of the protein structure predicted a cis to trans change in the respective peptide bond, thereby probably provoking major conformational and functional alterations of the protein. The p.Pro85Thr mutation showed a dramatically reduced activation (97%) of the NPPA promoter in luciferase assays and failed to induce NPPA expression in HEK 293 cells compared to wild-type TBX5 protein. The mutation did not interfere with the nuclear localization of the protein. ----- CONCLUSION: These results suggest that the dramatic functional alteration of the p.Pro85Thr mutation leads to the distinctive phenotype of the patient

    Comparative expression pathway analysis of human and canine mammary tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved.</p> <p>Results</p> <p>We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries.</p> <p>Conclusion</p> <p>Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.</p

    A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C

    Get PDF
    Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs

    Growth delay of human bladder cancer cells by Prostate Stem Cell Antigen downregulation is associated with activation of immune signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown. In this report we have characterized the contribution of PSCA expression to tumor growth.</p> <p>Methods</p> <p>A bladder cell line was engineered to express a doxycycline (dox) regulated shRNA against PSCA. To shed light on the PSCA biological role in tumor growth, microarray analysis was carried out as a function of PSCA expression. Expression of gene set of interest was further analyzed by qPCR</p> <p>Results</p> <p>Down regulation of the PSCA expression was associated with reduced cell proliferation <it>in vitro </it>and <it>in vivo</it>. Mice bearing subcutaneous tumors showed a reduced tumor growth upon treatment with dox, which effectively induced shRNA against PSCA as revealed by GFP expression. Pathway analysis of deregulated genes suggests a statistical significant association between PSCA downregulation and activation of genes downstream of the IFNα/β receptor.</p> <p>Conclusions</p> <p>These experiments established for the first time a correlation between the level of PSCA expression and tumor growth and suggest a role of PSCA in counteracting the natural immune response.</p

    Comparative Membranome Expression Analysis in Primary Tumors and Derived Cell Lines

    Get PDF
    Despite the wide use of cell lines in cancer research, the extent to which their surface properties correspond to those of primary tumors is poorly characterized. The present study addresses this problem from a transcriptional standpoint, analyzing the expression of membrane protein genes - the Membranome – in primary tumors and immortalized in-vitro cultured tumor cells. 409 human samples, deriving from ten independent studies, were analyzed. These comprise normal tissues, primary tumors and tumor derived cell lines deriving from eight different tissues: brain, breast, colon, kidney, leukemia, lung, melanoma, and ovary. We demonstrated that the Membranome has greater power than the remainder of the transcriptome when used as input for the automatic classification of tumor samples. This feature is maintained in tumor derived cell lines. In most cases primary tumors show maximal similarity in Membranome expression with cell lines of same tissue origin. Differences in Membranome expression between tumors and cell lines were analyzed also at the pathway level and biological themes were identified that were differentially regulated in the two settings. Moreover, by including normal samples in the analysis, we quantified the degree to which cell lines retain the Membranome up- and down- regulations observed in primary tumors with respect to their normal counterparts. We showed that most of the Membranome up-regulations observed in primary tumors are lost in the in-vitro cultured cells. Conversely, the majority of Membranome genes down-regulated upon tumor transformation maintain lower expression levels also in the cell lines. This study points towards a central role of Membranome genes in the definition of the tumor phenotype. The comparative analysis of primary tumors and cell lines identifies the limits of cell lines as a model for the study of cancer-related processes mediated by the cell surface. Results presented allow for a more rational use of the cell lines as a model of cancer
    corecore