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Abstract

Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the
biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive
biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in
environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used
direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions
exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo
Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity
and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our
results indicate that the combination of next generation sequencing (NGS) technologies and bioinformatics tools presents
a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into
environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in
various ecosystems to be better assessed and also predicted.
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Introduction

Natural microbial diversity encompasses a broad spectrum of

microorganisms (bacteria, fungi, viruses) that exert a strong

influence on global processes such as the carbon, nitrogen and

sulphur biogeochemical cycles. Quick responsiveness to environ-

mental changes and the rapid reproductive capacity of micro-

organisms allow for changes in both the qualitative and

quantitative composition of particular habitats. Indices of micro-

bial diversity are considered a sensitive measure of the state of the

environment and the health of a given habitat or ecosystem.

Assessment of biodiversity, therefore, represents a keystone in

understanding the complex processes within ecosystems and needs

to be taken into account in decisions concerning environmental

resource management and conservation priorities [1], [2].

In view of the intrinsic connection between environmental

quality and human health [3], many data have been collected to

characterize numerous sites exposed to pollution or, more

generally, to environmental changes. The types of data recorded

range from single analytical measurements (e.g. air temperature,

solar radiation, concentration of chemicals) to integrated datasets

including information about more complex ecological changes

(e.g. fluctuations in biocoenoses, productivity, element cycling) [4],

[5]. However, so far, relatively little attention has been given to

a broad systematic assessment of microbial biodiversity, most likely

because of the vast diversity of uncultured microbes [6] and the

lack of appropriate methods that would allow studies to be

performed in reasonable timescales and sampling resolutions.

Water quality assessment represents an important aspect of

environmental monitoring but is commonly restricted to chemical

monitoring, despite numerous studies indicating that biodiversity

in marine ecosystems is consistently reduced because of anthro-

pogenic contamination [7]. Alternative methods that better mirror

these alterations are therefore needed in order to detect such

highly complex changes. One technique that is particularly suited

for this purpose is next generation sequencing (NGS), which

enables new perspectives to be obtained through a metagenomics

approach applicable to any environmental sample including water

[8]. At the same time, metagenomic databases and analysis tools

combined with modelling and GIS applications are becoming

more widely available and represent an important new source of

information for exploring the intrinsic complexity of microbial

diversity in various habitats [9].

For a long time microbiological monitoring has been restricted

to the detection of microbes affecting human health, excluding the

majority of microbial species mainly because of technical

limitations [10]. This has changed with the arrival of new
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sequencing technologies, and recent studies offer a more complete

global view of microbial communities as indicators of environ-

mental conditions [11], [12].

In the present study we demonstrate the applicability of

metagenomic profiling to assessing the extent of anthropogenic

impact on two different marine ecosystems, complementing

traditional monitoring measurements such as chemical analyses.

Water samples were collected from two coastal regions of the

Mediterranean Sea, the Port of Genoa, in 2009 and the protected

area around Montecristo Island in 2010, two areas distinguished

by high and low anthropogenic impact, respectively. Sequencing

of total community DNA allowed us to generate metagenomic

profiles and compare the microbial diversity caused by the

anthropogenic stress response in these two distinct coastal marine

ecosystems.

Methods

Ethics Statement
For sampling in the port of Genoa, no specific permit was

required for the described field studies since the area is not

privately-owned or protected in any way. We confirm that the field

studies did not involve endangered or protected species.

For the sampling in the protected area Montecristo Island, all

necessary permits were obtained for the described field studies. A

permission was requested to the regulatory body Ministero

dell’Ambiente e della Tutela del Mare - Parco Nazionale

Arcipelago Toscano, which authorized the sampling with the

authorization n. L. 394191; D.P.R. 22/07/96.

Sample Collection and Processing
Two coastal marine environments in the Mediterranean Sea

were sampled using a sterile Ruttner sampler (Table 1, see Data

S1). Sampling was performed on March 12 and September 18,

2009 at the Genoa Port site (PolS = polluted site) and on June 3

and August 26, 2010 at the Montecristo Island site (PriS = pristine

site) (Fig. 1). During sampling, physical and chemical parameters

(temperature, salinity/conductivity, pH, Chla fluorescence) were

measured using a Hydrolab DSS probe. Water samples (20 liters)

were collected twice (two replicates) at each of three different

depths using sterile acid-washed Nalgene bottles. Samples were

stored at 280uC unless used immediately for filtration and DNA

extraction. Sediment samples (upper 3 cm) were collected at the

same sites using a Grab Ekman Birge (Wildlife Supply, USA) and

stored at 280uC. Statistically significant differences in physical

and chemical parameters between samples were determined using

the Kruskal-Wallis rank sum test.

Determination of Ultra-trace Elements in Marine
Sediments and Sea Water

Each sediment sample (0.2 g) was analyzed by ICP-MS using an

APEX system (Agilent, Santa Clara, CA, USA) following

a microwave (Milestone ETHOS 900) assisted digestion [13].

For sea water analysis, a HMI (High Matrix Interface) system was

added to an Agilent 7500 ICP-MS (Agilent, Santa Clara, CA,

USA) instrument to allow ultra-trace metals to be analyzed

without strong dilution.

Extraction of Total Community DNA
Total community DNA was recovered from the shallow and

homogeneous mixed water column by pooling these samples

together. All samples collected from the PolS were pooled together

(depth 0 to 8 m), while only samples from the upper layers (depth

0 to 7 m) of PriS were pooled together excluding the deepest

samples (14 m). Prior to DNA extraction each sample of 20 liters

was split into aliquots of approximately 250 ml to avoid clogging

of the filters. Aliquots were then directly filtered on separate

0.22 mm pore size membrane filters (Millipore, GSWP04700).

According to the Rapid Library Kit manufacturer’s instructions

(Roche), ,500 ng of sampled DNA should be used for the

preparation of pyrosequencing samples. Depending on the

plankton density in the pooled samples a variable number of

filters corresponding to different sample volumes were therefore

needed in order to extract the desired amount (500 ng) of

community DNA. As a consequence the total volume filtered for

the March 12 and September 18, 2009 PolS samples was 5.05 and

5.625 liters, respectively, and volumes of 10 liters were filtered for

each of the PriS sample. The filters were stored at –20uC. Before

DNA extraction, the thawed filters were incubated and shaken

(160 rpm) in 5 ml of 50 mM K2PO4 buffer overnight at 4uC for

better recovery of cells. Subsequently, they were treated with 5 U

ml21 of lyticase (Sigma-Aldrich, USA), 4470 U ml21 of lysozyme

(Sigma-Aldrich,USA) and finally 2.5 ml of ß-mercaptoethanol

(Sigma-Aldrich, USA). DNA was extracted using the DNeasy

Blood and Tissue kit (Qiagen, UK) according to the manufac-

turer’s instructions. DNA was quantified on 1% agarose gel using

a MassRulerTM High Range DNA Ladder (Fermentas, Canada).

Determination of Cell Numbers
To determine bacterial abundance, samples fixed in 1%

paraformaldehyde were sonicated for 5 min at 4uC (Bandelin

Sonorex Digital 10P, 480W), stained with SybrGreen I (final

concentration 5 mM) and analyzed by flow cytometry (BD LSR II,

excitation by Solid State Sapphire L1 488 nm, band pass filters

530/30 nm). For quantification, ,506103 particles of the internal

standard were used (BD CountBrightTM absolute counting beads,

Ø 6 mm).

Direct Pyrosequencing of Total Community DNA
Total community DNA was directly sequenced using the

equipment and tools available at the Zürich Functional Genomics

Centre according to the manufacturer’s instructions: a GS Rapid

Library Kit (Roche), Roche 454 Genome Sequencer FLX with the

GS Titanium Sequencing Kit XLR70, GS Titanium PicoTiter-

Plate Kit (70675) and gsRunProcessor from GS FLX SW v2.3.

Two samples were run in parallel on one plate yielding 200–

300 Mbp of sequence information per sample. The metagenomic

data is available through the MG-RAST server (http://

metagenomics.anl.gov/metagenomics.

cgi?page = MetagenomeSelect) with ID numbers 4449589.3

(PolS1), 4449685.3 (PolS2), 4451102.3 (PriS1), 4451593.3 (PriS2).

Sequence Read Processing and Annotation of
Metagenomic Profiles

Raw reads were processed using the Rapid Analysis of Multiple

Metagenomes with a Clustering and Annotation Pipeline

(RAMMCAP [14]; http://weizhong-lab.ucsd.edu/rammcap) im-

plemeted in CAMERA (http://camera.calit2.net/) and the MG-

RAST server ([15]; http://metagenomics.anl.gov/). In RAMM-

CAP, exact read duplicates were removed using CD-HIT [16] and

ribosomal sequences were predicted using HMMER3 [17]. tRNAs

were predicted by tRNAscan-SE [18]. All RNA sequences were

masked before further RAMMCAP analysis. ssuRNAs were

classified into OTUs using the GreenGenes database and the

NAST alignment tool ([19], [20]; http://greengenes.lbl.gov/cgi-

bin/nph-index.cgi) applying a 70% sequence identity, 100 bp

alignment length and 1.0e-05 e-value threshold.

Metagenomic Profile in Environmental Monitoring
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Figure 1. Sample site location. Geographic location of the sampling sites in the Mediterranean Sea. PolS – polluted site at Genoa Port; PriS –
pristine site at the Montecristo Island.
doi:10.1371/journal.pone.0043630.g001

Table 1. Background parameters collected for all samples.

Site Polluted Site (Genoa Port 44u 24’203’’, 8u 55’ 470’’) Pristine Site (Montecristo Island 42u19’ 44’’, 10u 17’ 29’’)

Date Mar 12, 09 Sept 18, 09 Jun 3, 10 Aug 26, 10

Sample PolS1 PolS2 PriS1 PriS2

depth (m) depth (m)

Temperature (uC) 0 13.460.01 23.760.01 0 20.460.1 25.860.20

4 13.560.01 23.760.01 7 19.960.1 25.660.02

8 13.560.01 23.760.01 14 18.860.8 24.960.40

Salinity 0 36.360.08 36.160.01 0 36.660.02 38.760.03

4 36.560.03 36.160.02 7 36.760.02 38.760.01

8 36.560.02 36.260.02 14 36.860.09 38.760.05

Chla (mg Chlal21) 0 0.5760.09 0.6760.02 0 0.0460.01 0.1860.04

4 1.2660.13 0.9960.19 7 0.0460.01 0.160.02

8 1.2560.05 0.8460.16 14 0.3760.10 0.160.02

TNB (106 cells ml21 ) 0 1.4760.20 0.7160.07 0 0.7060.07 0.4060.04

4 1.1360.11 0.7260.10 7 0.4160.05 0.2160.02

8 0.5860.08 0.7060.07 14 0.6260.06 0.3360.04

Chla – chlorophyll a concentration, TNB – total number of bacteria, data: mean values 6 SD of two replicates.
doi:10.1371/journal.pone.0043630.t001
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In the MG-RAST analysis, the optional initial quality control

(QC) filter was applied to the raw sequence data combined with

their associated quality scores (FASTQ format) to remove

duplicate and low quality reads. Organisms were classified in

MG-RAST using the M5NR protein database (http://tools.

metagenomics.anl.gov/m5nr/) applying an e-value threshold

1.0e-05. Functional annotation and classification relied on the

KEGG Orthology ([21]; http://www.genome.jp/kegg/ko.html)

or SEED subsystem ([22]; http://www.theseed.org/wiki/

Home_of_the_SEED) databases applying an e-value threshold of

1.0e-05. Functional annotation with PFAM ([23]; http://pfam.

sanger.ac.uk/) was performed using the CoMet server ([24];

http://comet.gobics.de). Annotation against the Clusters of

Orthologous Groups (COG) database [25] was performed with

RAMMCAP on all reads that passed the MG-RAST QC filter.

Potential open reading frames (ORFs) were detected using

ORF_finder (minimum ORF length: 40aa) and annotated against

COG with RPS-BLAST [26] applying a hit e-value threshold

#1.0e-05.

Gene family and category enrichment were analyzed on the

metagenomic profiles using the ShotgunFunctionalizeR tool [27]

implemented in R (http://www.r-project.org/). Functional anno-

tation profiles obtained from RAMMCAP, MG-RAST or

COMET were reformatted for ShotgunFunctionalizeR analysis

using custom-generated Perl scripts (see Data S2). Prior to

ShotgunFunctionalizeR analysis, all counts associated with an

individual sample were normalized taking into account the

number of total reads post MG-RAST QC.

Results

Environmental Parameters and Abundance of Bacteria
Samples were collected at two environmentally distinct sites in

the Ligurian Sea during 2009 and 2010 (Figure 1). The Port of

Genoa (polluted site, PolS) was chosen as the first site coinciding

with an important container terminal of the Mediterranean Sea

located in a highly urbanized and industrialized area [28]. In stark

contrast to this, the second site (pristine site, PriS) is close to

Montecristo Island, a protected natural reserve area in the Tuscan

archipelago [29].

In order to determine general environmental parameters

characterizing the two sites, samples were collected as two

replicates at different depths within a column of homogeneously

mixed water mass (Table 1). Salinity was slightly higher at PriS

though this was not statistically significant (p.0.05). Average

sample temperature reflected the expected seasonal variation with

values being lowest in March, medium in June and highest in

August and at the beginning of September. Chlorophyll a (Chla)

concentration was significantly higher in PolS (median 0.86 mg

Chla l21) than in PriS (median 0.10 mg Chla l21) (p,0.001),

consistent with the expected high level of eutrophication at the

polluted site. The same trend was observed for the total number of

bacteria (TNB), which was significantly higher at PolS (median

0.716106 cells ml21, p,0.01) than PriS (median

0.416106 cells ml21). Taken together, the Chla and TNB values

indicate a global shift in biodiversity towards planktonic organisms

such as bacteria and algae consistent with a higher level of

nutrients at the polluted site.

The concentration of trace metals in the water column as

revealed by mass spectrometry did not differ between sites, with

the exception of Mn, which was about three times higher at the

polluted site (median in PolS 2.805 mg Mn l21, median in PriS

0.955 mg Mn l21, p = 0.048, see Data S3). Differences between the

polluted and pristine sites were more pronounced in the sediment

samples with several metals showing a statistically significant

enrichment in PolS as compared to PriS: Cd (0.105 and 0.025 mg

g21, p = 0.007), Co (10.7 and 2.4 mg g21, p = 0.045), Fe (21.1 and

9.1 mg g21, p = 0.019) and Mn (880 and 202 mg g21, p = 0.0005)

(see Data S3).

Direct Sequencing of PolS and PriS Samples
The global difference in biodiversity, already indicated by the

Chla and TNB values, was examined in more detail using

a metagenomic approach based on direct sequencing of water

samples from the two sites. Samples were collected at different

time points so any possible site-independent variations could also

be captured, and total community DNA for sequencing was

extracted from a total of four samples. Overall, about 2.5 million

single reads (total about 109 bps, average read length between 330

and 400 bps) were generated from the samples (Table 2) using

standard pyrosequencing technology and protocols. Prior to

further processing, the raw read data were subjected to a QC

filter to remove lower quality and duplicate reads, the latter

representing a phenomenon frequently observed during pyrose-

quencing [30], [31]. The filtering step removed between 12% and

33% of reads in each sample, with the highest value observed for

PolS1 (Table 2). A complementary analysis using the CD-HIT

clustering tool [16] revealed that within practically all clusters

(clustered at the 96% identity level) individual reads started at

exactly the same position. In a highly complex metagenome the

probability of observing true duplicate sequences originating from

exactly the same genome location is very low, even when one

dominant operational taxonomic unit (OTU) is assumed [30]. The

observed duplicate reads are therefore most likely to have been

artificially generated during the sequencing reaction and the

percentage of true natural duplicates should be very low [31].

Unique sequence reads passing the QC filtering step were then

subjected to further analysis focusing on biodiversity and

functional protein annotation.

Biodiversity in PolS and PriS Samples
Domain distributions in the four samples, determined using the

MG-RAST M5NR database, showed the expected dominance of

Bacteria (.94%), a small fraction of Eukaryotes (2–3%) and

generally less than 1% of Archaea, viruses and other unclassified

organisms (Fig. 2), values generally observed in coastal sea samples

[32], [33].

Annotation quality was consistently high across all M5NR

database sources with more than 80% of similarities falling below

the e-value cutoff value of 1.0e-05 subsequently applied during

functional characterization of the metagenomic profiles. A more

detailed comparison of organism abundance at the phylum and

class levels correctly grouped the samples according to their origin,

with some intra-group variations recognizable especially between

the polluted samples PolS1 and PolS2 (Fig. 3). Both inter- and

intra-group differences became more pronounced when ssuRNAs

were classified by GreenGenes at the class (Fig. 4) or OTU (Fig. 5)

level. Gammaproteobacteria, Alphaproteobacteria, Flavobacteria

and Actinobacteria dominated the class distribution with Actino-

bacteria being practically absent in the polluted samples. At the

OTU level more subtle differences became apparent (Fig. 5, see

Data S4), being particularly pronounced when the two polluted

samples were compared. Principal component analysis on the

MG-RAST global organism classification profile confirmed this

result showing the polluted samples to be well separated, quite

distinct from the pristine samples, which nearly coincide (Fig. 5).

Consistent with this finding, overlap between the latter samples at

Metagenomic Profile in Environmental Monitoring
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the OTU level was considerably greater than between the polluted

samples (Fig. 5).

Functional Annotation of Predicted ORF Fragments and
Comparison of Metagenomic Profiles

Predicted protein features were annotated using a panel of

complementary tools: RAMMCAP for COG protein families [25],

[14], COMET for PFAM family profiles [23], [24], MG-RAST

[15] for KEGG pathways [34] and SEED subsystems [22]. For

consistency the RAMMCAP and COMET annotations were

performed on reads that passed the initial MG-RAST QC filter. In

all cases, to avoid bias from lower quality spurious hits, an e-value

threshold of 1.0e-05 was applied when the results were exported or

further processed. Extrapolating from the results obtained during

the COG analysis, about 40% of predicted protein features were

successfully annotated, with only a minor fraction of reads (,1%)

containing two distinct annotated protein features. The annotation

results obtained for the individual metagenomic profiles were then

combined into a format suitable for analysis with ShotgunFunc-

tionalizeR [27] in order to detect significant differences between

the two groups of samples (polluted and pristine) and also between

individual samples within each group. To correct for different

global sample sizes the individual counts were normalized with

respect to the total number of predicted protein features prior to

ShotgunFunctionalizeR analysis.

The enrichment analysis highlighted a large number of COG

families with significant differences between the two sample groups

(Fig. 6a, see Data S5). In particular, ionic transport systems (silver

efflux pump, cation transport ATPase), functions related to

recombination (transposase) and several COG families implicated

in signalling processes (e.g. EAL domain, GGDEF domain, signal

transducing histidine kinase, CheY-like receiver) were present

predominantly in the polluted samples. In contrast, the pristine

samples showed a much more pronounced prevalence of transport

functions such as ABC-type sugar transport systems and functions

related to coenzyme 420 (Fig. 6a). PFAM analysis essentially

mirrored the distribution from COG e.g. with luciferase-like

monooxygenase, a coenzyme 420 dependent activity and Pup-

protein ligase dominating in the PriS samples. Similarly, among

the highest scoring PFAM families, several signal transduction

functions (EAL, TonB, GGDEF) and processes related to re-

combination such as Integrase or Transposase were more frequent

at the polluted site (Fig. 6b).

Table 2. Overview of raw sequence read output, processing and annotation of metagenomic profiles.

PolS1
Plate #1

PolS2
Plate #1

PriS1
Plate #2

PriS2
Plate #2

RAW Data

Total # of reads 571,744 568,630 671,764 693,149

Total bp 194,960,711 186,243,134 269,776,240 245,234,759

MG-RAST Analysis

Total # of reads 571,744 568,630 671,764 693,149

Total bp 194,960,711 186,243,134 269,776,240 245,234,759

Average length (bp) 3406118 3276118 4016129 3536124

Total # of reads post QC 383,131 439,385 523,347 596,911

Total bp post QC 135,544,175 147,260,770 211,135,348 211,543,631

Average length post QC (bp) 3536121 3356119 4036128 3546124

Processed unique protein features 359,446 379,519 418,664 495,641

Processed unique RNA features 61,724 73,720 102,658 121,498

RAMMCAP Analysis

# of reads 100%(CDHIT threshold) 563,654 563,247 659,813 689,527

# of reads 96%(CDHIT threshold) 378,589 429,269 516,048 587,934

# protein features analyzed 803,461 812,495 1,413,570 1,420,763

# of COG hits (e-value .1.0e-05) 139,603 140,392 254,215 227,479

# of COG families 3452 3248 3248 3342

Phylogenetic markers

# of ssu rRNAs (RAMMCAP) 938 710 759 987

# of ssu rRNAs after NAST 800 623 668 854

# of OTUs (GreenGenes) 182 130 180 258

MG-RAST Functional Annotation

# of KEGG Orthology entries 224 213 223 231

# of SEED subsystem level 2 424 423 422 426

# of SEED subsystem level 3 757 746 738 756

COMET Functional Annotation

# of PFAM families 6651 6410 6822 7167

doi:10.1371/journal.pone.0043630.t002

Metagenomic Profile in Environmental Monitoring

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e43630



Because ShotgunFunctionalizeR also allows groups of function-

ally connected genes, e.g. whole pathways, to be examined

concurrently, the analysis was extended to COG gene categories

and enzymatic pathways. Several COG categories differed

significantly between the sample groups (see Data S6) with ‘‘Signal

transduction’’ and ‘‘Carbohydrate transport and metabolism’’

(Fig. 7) appearing at the top of the list, in agreement with the COG

family-focused analysis. Many differences were also observed (see

Figure 2. Taxonomic annotation by MG-RAST. Pie charts summarizing the combined taxonomic domain information obtained through
annotation against the M5NR database. Bar-chart diagrams on the right indicate extent and quality (e-value distribution) of the annotation from each
individual database. Similarities below the 1.0.e-05 e-value threshold, generally less than 20% for each individual database, are coloured blue.
doi:10.1371/journal.pone.0043630.g002
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Data S6) for metabolic pathways (mapped through the EC

numbers from the MG-RAST KEGG and SEED annotation),

including the prevalence of several degradation pathways such as

‘‘Styrene degradation’’ and ‘‘Benzoate degradation via CoA

ligation’’ in the polluted sample group. MG-RAST also allows

metagenomic profiles to be analyzed at different hierarchical levels

of SEED subsystem classification. The annotation results from the

SEED database were therefore re-processed at two different levels

of complexity, the subsystem level 2 (Fig. 8a) and the subsystem

level 3 (Fig. 8b). The results closely matched the previous findings

from the COG and PFAM analysis indicating signal transduction,

transport and restriction functions among the subsystems with the

greatest differences. In addition, several subsystems in the polluted

sample group involving heavy metals (‘‘cobalt-zinc-cadmium

resistance’’, ‘‘copper-homeostasis’’) or connected to compound

resistance (‘‘Multidrug Resistance efflux pump’’, ‘‘Resistance to

antibiotic and toxic compounds’’) were significantly enriched,

reflecting the more hostile harsh environmental conditions.

The biodiversity distribution within the four metagenomic

profiles had indicated a substantial difference between the two

polluted samples, in particular at the OTU level. Therefore,

functional protein annotation was also compared separately within

each group, again using ShotgunFunctionalizeR. For the two

pristine samples very few COG families showed a significant

difference (Benjamini-Hochberg (BH) adjusted p-value ,1.0E-05),

confirming their high similarity. In contrast, the abundances of

many more COGs differed between the two polluted samples

(Data S6). However, importantly, only a small number of these

COG families had also been found in the between-groups

ShotgunFunctionalzie comparison (see Data S7). A small bias

due to the more heterogeneous composition of the polluted

samples can therefore not be excluded; nevertheless, the major

conclusions from the group-wise analysis should be considered

valid.

Discussion

Present practice in environmental monitoring lacks tools that

are adequate for detecting and analyzing the impact of complex

factors on aquatic and terrestrial ecosystems. In particular,

monitoring the health of aquatic environments typically focuses

on chemical pollutants [37], excess of nutrients leading to

eutrophication, and biological indicators for pathogen contami-

nation [38], [39]. Although such data certainly provide critical

parameters describing the health of the environment, more subtle

(and earlier) indicators of alterations caused by multiple stress

factors might be missed [40]. Since in general all organisms within

a particular ecosystem will be affected and changes might be

relatively small, a more global, but at the same time more detailed,

view of community composition could provide important in-

formation. Methods such as the metagenomic analysis of water

samples performed in the present study provide such a global view,

thus complementing the more traditional approaches.

In the present study two coastal marine systems exposed to

rather different anthropogenic pressures have been examined: the

Port of Genoa, located in a heavily urbanized and industrialized

area, and the uninhabited Montecristo Island resource. In both

cases, samples were collected before and at the end of the summer

period of 2009 (Port of Genoa) or 2010 (Montecristo). A more

synchronized schedule might have been preferred at first glance,

but one aim of the present study was to gain insight into how much

sample variation should be expected when sampling a large

complex ecosystem. In routine monitoring practice, water samples

would in general be taken only from ‘‘suspected’’ sites and not

necessarily always at the same time point during the year.

Knowledge about the potential global variations in the polluted

samples will be important for comparing them optimally to

a ‘‘healthy’’ reference sample (or reference profile). We have

therefore chosen, as a first test case, to examine four water samples

collected at different time points from two environmentally very

distinct sites located in distant areas (several hundred kilometres

apart) of the Mediterranean coastal sea.

Analysis of the metagenomic profiles proved consistent with the

expected sample characteristics. The functional protein annotation

recapitulated the results from phylogenetic analysis well, showing

clear differences between the two sample groups exposed to

distinct anthropogenic pressures. In the pristine sample site, the

high abundance of Actinobacteria and the associated enzymatic

functions and pathways detected are consistent with an environ-

ment containing oligotrophic organisms adapted to low levels of

nutrients and characterized by a high potential for utilizing low

concentrations of organic substrates through energy-efficient ABC

transporter systems [41]. Expansion of the ABC transporters is

also consistent with an environment in which nutrients are scarce

and uptake needs to be optimized as much as possible. In addition,

several functional traits characteristic of Actinobacteria [35], [36]

were overrepresented in samples collected from the pristine site

e.g. luciferase-like monooxygenase, a coenzyme 420 dependent

Figure 3. Phylogenetic clustering.MG-RAST heatmaps representing
the phylogenetic diversity of the four samples at the phylum (left) or
class (right) level. Differences between PolS1 and PolS2 are more
pronounced than between PriS1/PriS2 sample pairs. Red and green
colours indicate low and high abundance, respectively.
doi:10.1371/journal.pone.0043630.g003
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activity, and Pup-protein ligase, consistent with the observed

frequencies of phylogenetic makers (rRNA genes) (Figs. 4 and 6).

In contrast, polluted environments are generally characterized

by high levels of numerous stress factors and high level of

nutrients.

Organisms adapted to such environments are in general

copiotrophs, e.g. Gammaproteobacteria, which are the ‘‘feast

and famine’’ strategists optimizing rapid growth in the presence of

labile nutrients. Reflecting this characteristic, the microbial

community at the polluted site had significantly higher levels of

signal transduction regulator proteins involved in a variety of

cellular responses to environmental stimuli [41]. Enrichment of

the functional community profile with efflux pumps and cation

transport systems indicates the necessity for increased protection

against toxic compounds such as metal ions, consistent with the

high concentrations of several metals in the sediment (Data

S2).The polluted samples were also enriched in functions related to

cell motility, intracellular trafficking and secretion, features linked

to the tendency of copiotrophs to gain access to nutrient-enriched

patches in open water environments. Over-representation of genes

belonging to signal transduction functions (EAL, TonB, GGDEF)

and processes related to recombination e.g. Integrase or

Transposase suggest regulation of gene expression in response to

external and internal stimuli and increased horizontal gene

transfer. Together, these functional traits facilitate the adaptation

of the microorganisms to an environment characterized by highly

heterogeneous, variable and unfamiliar stimuli from anthropo-

genic sources.

Despite being collected at different seasonal time points during

the year, the metagenomic profiles from the two pristine samples

closely resembled each other. Generation of a ‘‘healthy’’ reference

profile therefore seems feasible and further refinement through

Figure 4. Phylogenetic community diversity. Diversity represented at the class level as determined using GreenGenes. Values reported
represent the percentage fraction present in each sample. Gammabacteria are enriched in the polluted samples PolS1/PolS2 whereas Actinobacteria
dominate in the pristine samples PriS1/PriS2.
doi:10.1371/journal.pone.0043630.g004
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Figure 5. OTU distribution based on ssu rRNAs. OTU distribution as determined by GreenGenes. Only the most frequently encountered OTUs
representing about 50% of the total are shown (complete list in Data S4). Clear differences are apparent not only between the two sample classes but
also between the two polluted samples PolS1 (blue bars) and PolS2 (red bars). Labels indicate the OTU class: a – Alphaproteobacteria, b -
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incorporation of additional samples should allow the profile to be

consolidated. In contrast, the metagenomic profiles of the two

polluted samples exhibited much larger variation, probably

reflecting fluctuations of the harsher environmental conditions

caused by quantitative and qualitative variations of pollutants.

Consequently, a much larger sampling study will be required to

Betaproteobacteria, c - Gammaproteobacteria, Ac – Actinobacteria, Ba – Bacteroidetes (Flavobacteria), Cy – Cyanobacteria, FL – Flavobacteria, Sy –
Synechococcophycideae, Chl - Chloroplast, Clo - Clostridia. (Insert) Principal component analysis of sample diversity using the MG-RAST M5NR
protein classification. PriS1 and PriS2 nearly coincide, in contrast to PolS1 and PolS2, which are well separated.
doi:10.1371/journal.pone.0043630.g005

Figure 6. Functional protein annotation of metagenomic profiles. A. RAMMCAP COG annotation. Only the 20 COG families with the most
significant differences (ShotgunFunctionalizeR) between pairs of polluted and pristine samples are shown (complete list in Data S5). B. Top 30 PFAM
families showing the most significant differences (ShotgunFunctionalizeR) between the polluted and pristine samples in the COMET annotation
profiles (complete list available in Data S5). Values shown represent the relative abundance of each sample with respect to the sample with the
highest abundance (normalized to 1).
doi:10.1371/journal.pone.0043630.g006
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identify robust generally-applicable indicators of pollution. Im-

portantly, in order to extend the applicability of metagenomic

monitoring to potentially much less polluted samples (and allow

negative shifts in community profiles to be recognized early),

a large number of samples with a broad distribution of pollution

levels will have to be examined.

Compared to more traditional methods, PCR-based direct

sequencing of total community DNA mostly avoids several of the

methodological problems that potentially introduce various biases

[42], [43]. For example, use of a single set of universal rRNA gene

primers has been reported to miss up to 50% of the total microbial

species richness [44], [45]. In addition, specific phylogenetic

markers such as rRNA genes do not provide information

regarding the spectrum and prevalence of functional properties

within a community, i.e. properties associated with protein-coding

genes. The presence of anthropogenic pressures will modulate

biodiversity and also, consequently, the overall prevalence of

protein-coding genes belonging to particular functional classes.

The metagenomic approach does enable global profiles of

predicted protein-coding genes to be compared among different

communities and can therefore reveal characteristic differences

caused by distinct environmental conditions. However, 454

pyrosequencing data in particular have to be critically examined

to detect possible systematic artefacts. In our hands, up to 33% of

reads might actually be artificial replicates, a fraction similar to

what has been reported previously [30], [31]. Fortunately, new

tools are becoming available for detecting and estimating these

sources of error, thus enabling artificial replicates to be removed

efficiently [46], [47] and allowing for correct interpretation of

metagenomic data.

Although it is still at an early stage, metagenomic analysis of

total community DNA using direct sequencing without cloning

and with long sequence fragments (,400 bp or more) opens up

new perspectives in environmental monitoring by providing

a relatively simple, robust and reproducible approach to studying

samples with unknown diversity and exposed to unknown

anthropogenic pressures. Until very recently 454 pyrosequencing

had the advantage to produce longer average read length

compared to the rather short reads (,100 bp) obtained by

Illumina, the main alternative and cheaper technology. Since the

average gene length in bacteria is about 1 kB [48], the former

technology was chosen for the present study, however at

a considerably higher cost. Rapid development and improvements

of other technologies have closed this gap in the meanwhile

increasing both average read length and the amount of data

generated. In a recent direct comparison of the two technologies

(Roche 454 FLX Titanium vs Illumina Genome Analyzer II) on

a real metagenomic sample, Illumina was judged comparable, if

not higher performance, to the 454 system [49]. Certainly the

lowering cost will pave the way for a broader and more intense

application of metagenomics and its complementary metatran-

scriptomics [50], in order to obtain more detailed and broad

Figure 7. Functional annotation at the pathway and category level. Examples of whole categories (COG) or pathways (KEGG, SEED) showing
significant differences between the two sample groups as determined by ShotgunFunctionalizeR. A complete list is available in Data S6.
doi:10.1371/journal.pone.0043630.g007
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understanding of the potential changes induced in marine

microbial communities under altered environmental conditions.

In this perspective our results represent only a first step and more

systematic broad studies will be needed to robust monitoring

practises based on metagenomic profiles.

Finally, it should not be neglected that microorganisms are

known to make up the bulk of the biota in both natural and

managed ecosystems. Proposals to restore the function and

integrity of ecosystems are increasingly being put forward, and

any initiative would be incomplete if considerations regarding the

complexity and integrity of the underlying microbial systems are

not included.

Supporting Information

Data S1 Minimal Information about Metagenomics
Sequences (MIMS).

Figure 8. Functional annotation using the SEED subsytem definition. Comparison of metagenomic profiles at A. the SEED subsystem level 2
or B. at the SEED subsystem level 3. Analysis was performed using ShotgunFunctionalizeR with SEED annotation results from MG-RAST. Only
a selection of subsystems showing the greatest differences between the two sample groups is shown. The complete list is available in Data S5.
doi:10.1371/journal.pone.0043630.g008
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(XLS)

Data S2 Description of the analysis workflow together
with a collection of custom-written Perl scripts and
example data files.
(ZIP)

Data S3 Table describing sediment metal concentra-
tions.
(XLS)

Data S4 Complete GreenGenes OTU classification
table.
(XLS)

Data S5 Complete table describing sample differences
by functional annotation against COG, Pfam, SEED and
KEGG (ShotgunFunctionalizeR analysis).
(XLS)

Data S6 Complete table describing sample differences
by pathway annotation against COG, SEED and KEGG
(ShotgunFunctionalizeR analysis).
(XLS)

Data S7 ShotgunFunctionalizeR analysis comparing the
COG functional annotation of two pristine or the two
polluted samples.

(XLS)
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32. Brochier-Armanet C, Deschamps P, López-Garcı́a P, Zivanovic Y, Rodrı́guez-

Valera F, et al. (2011) Complete-fosmid and fosmid-end sequences reveal

frequent horizontal gene transfers in marine uncultured planktonic archaea.

ISME J 5: 1291–1302.

33. Feingersch R, Suzuki M, Shmoish M, Sharon I, Sabehi G, et al. (2010)

Microbial community genomics in eastern Mediterranean Sea surface waters.

ISME J 4: 78–87.

34. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. (1999) KEGG: Kyoto

encyclopedia of genes and genomes. Nucleic Acids Res 27: 29–34.

Metagenomic Profile in Environmental Monitoring

PLOS ONE | www.plosone.org 13 August 2012 | Volume 7 | Issue 8 | e43630



35. Selengut J, Haft D (2010) Unexpected abundance of coenzyme F420-dependent

enzymes in Mycobacterium tuberculosis and other actinobacteria. J Bacteriol
192: 5788–5798.

36. Iyer L, Burroughs A, Aravind L (2008) Unraveling the biochemistry and

provenance of pupylation: A prokaryotic analog of ubiquitination. Biol Direct 3:
Article number 45.

37. Sumpter J (2009) Protecting aquatic organisms from chemicals: The harsh
realities. Philos Trans R Soc A Math Phys Eng Sci 367: 3877–3894.

38. Sinigalliano C, Fleisher J, Gidley M, Solo-Gabriele H, Shibata T, et al. (2010)

Traditional and molecular analyses for fecal indicator bacteria in non-point
source subtropical recreational marine waters. Water Res 44: 3763–3772.

39. Wade T, Pai N, Eisenberg J, Colford Jr J (2003) Do U.S. Environmental
Protection Agency water quality guidelines for recreational waters prevent

gastrointestinal illness? A systematic review and meta-analysis. Environ Health
Perspect 111: 1102–1109.

40. Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, et al. (2004) Rationale

for a new generation of indicators for coastal waters. Environ Health Perspect
112: 979–986.

41. Lauro F, McDougald D, Thomas T, Williams T, Egan S, et al. (2009) The
genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A

106: 15527–15533.

42. Acinas S, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz M (2005) PCR-induced
sequence artifacts and bias: Insights from comparison of two 16s rRNA clone

libraries constructed from the same sample. Appl Environ Microbiol 71: 8966–

8969.

43. Suzuki M, Giovannoni S (1996) Bias caused by template annealing in the

amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol

62: 625–630.

44. Hong S, Bunge J, Leslin C, Jeon S, Epstein S (2009) Polymerase chain reaction

primers miss half of rRNA microbial diversity. ISME J 3: 1365–1373.

45. Jeon S, Bunge J, Leslin C, Stoeck T, Hong S, et al. (2008) Environmental rRNA

inventories miss over half of protistan diversity. BMC Microbiol 8: Article

number 222.

46. Balzer S, Malde K, Jonassen I (2011) Systematic exploration of error sources in

pyrosequencing flowgram data. Bioinformatics 27: i304-i309.

47. Schmieder R, Edwards R (2011) Quality control and preprocessing of

metagenomic datasets. Bioinformatics 27: 863–864.

48. Koonin EY & Wolf YI (2008) Genomics of bacteria and archaea: the emerging

dynamic view of the prokaryotic world. Nucleic Acids Research 36: 6688–6719.

49. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct

Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same

Microbial Community DNA Sample. PLoS ONE 7: e30087.

50. Giffords SM, Sharma S, Rinta-Kanto JM, Moran MA (2010) Quantitative

analysis of a deeply sequenced marine microbial metatranscriptome. The ISME

Journal 5: 461–472.

Metagenomic Profile in Environmental Monitoring

PLOS ONE | www.plosone.org 14 August 2012 | Volume 7 | Issue 8 | e43630


