45 research outputs found

    Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target

    Get PDF
    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective B therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo

    SNPs array karyotyping reveals a novel recurrent 20p13 amplification in primary myelofibrosis.

    Get PDF
    The molecular pathogenesis of primary mielofibrosis (PMF) is still largely unknown. Recently, single-nucleotide polymorphism arrays (SNP-A) allowed for genome-wide profiling of copy-number alterations and acquired uniparental disomy (aUPD) at high-resolution. In this study we analyzed 20 PMF patients using the Genome-Wide Human SNP Array 6.0 in order to identify novel recurrent genomic abnormalities. We observed a complex karyotype in all cases, detecting all the previously reported lesions (del(5q), del(20q), del(13q), +8, aUPD at 9p24 and abnormalities on chromosome 1). In addition, we identified several novel cryptic lesions. In particular, we found a recurrent alteration involving cytoband 20p13 in 55% of patients. We defined a minimal affected region (MAR), an amplification of 9,911 base-pair (bp) overlapping the SIRPB1 gene locus. Noteworthy, by extending the analysis to the adjacent areas, the cytoband was overall affected in 95% of cases. Remarkably, these results were confirmed by real-time PCR and validated in silico in a large independent series of myeloproliferative diseases. Finally, by immunohistochemistry we found that SIRPB1 was over-expressed in the bone marrow of PMF patients carrying 20p13 amplification. In conclusion, we identified a novel highly recurrent genomic lesion in PMF patients, which definitely warrant further functional and clinical characterization

    Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified

    Get PDF
    Peripheral T-cell lymphomas not otherwise specified (PTCLs/NOS) are rare and aggressive tumours whose molecular pathogenesis and diagnosis are still challenging. The microRNA (miRNA) profile of 23 PTCLs/NOS was generated and compared with that of normal T-lymphocytes (CD4+, CD8+, naive, activated). The differentially expressed miRNA signature was compared with the gene expression profile (GEP) of the same neoplasms. The obtained gene patterns were tested in an independent cohort of PTCLs/NOS. The miRNA profile of PTCLs/NOS then was compared with that of 10 angioimmunoblastic T-cell lymphomas (AITLs), 6 anaplastic large-cell lymphomas (ALCLs)/ALK+ and 6 ALCLs/ALK - . Differentially expressed miRNAs were validated in an independent set of 20 PTCLs/NOS, 20 AITLs, 19 ALCLs/ALK - and 15 ALCLs/ALK+. Two hundred and thirty-six miRNAs were found to differentiate PTCLs/NOS from activated T-lymphocytes. To assess which miRNAs impacted on GEP, a multistep analysis was performed, which identified all miRNAs inversely correlated to different potential target genes. One of the most discriminant miRNAs was selected and its expression was found to affect the global GEP of the tumours. Moreover, two sets of miRNAs were identified distinguishing PTCL/NOS from AITL and ALCL/ALK - , respectively. The diagnostic accuracy of this tool was very high (83.54%) and its prognostic value validated

    Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study

    Get PDF
    PURPOSE: The differential diagnosis among the commonest peripheral T-cell lymphomas (PTCLs; ie, PTCL not otherwise specified [NOS], angioimmunoblastic T-cell lymphoma [AITL], and anaplastic large-cell lymphoma [ALCL]) is difficult, with the morphologic and phenotypic features largely overlapping. We performed a phase III diagnostic accuracy study to test the ability of gene expression profiles (GEPs; index test) to identify PTCL subtype. METHODS: We studied 244 PTCLs, including 158 PTCLs NOS, 63 AITLs, and 23 ALK-negative ALCLs. The GEP-based classification method was established on a support vector machine algorithm, and the reference standard was an expert pathologic diagnosis according to WHO classification. RESULTS: First, we identified molecular signatures (molecular classifier [MC]) discriminating either AITL and ALK-negative ALCL from PTCL NOS in a training set. Of note, the MC was developed in formalin-fixed paraffin-embedded (FFPE) samples and validated in both FFPE and frozen tissues. Second, we found that the overall accuracy of the MC was remarkable: 98% to 77% for AITL and 98% to 93% for ALK-negative ALCL in test and validation sets of patient cases, respectively. Furthermore, we found that the MC significantly improved the prognostic stratification of patients with PTCL. Particularly, it enhanced the distinction of ALK-negative ALCL from PTCL NOS, especially from some CD30+ PTCL NOS with uncertain morphology. Finally, MC discriminated some T-follicular helper (Tfh) PTCL NOS from AITL, providing further evidence that a group of PTCLs NOS shares a Tfh derivation with but is distinct from AITL. CONCLUSION: Our findings support the usage of an MC as additional tool in the diagnostic workup of nodal PTCL

    Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target

    Get PDF
    Blastic Plasmacytoid Dendritic Cell Neoplasm is a rare and aggressive hematological malignancy currently lacking an effective therapy. To possibly identify genetic alterations useful for a new treatment design, we analyzed by whole-exome sequencing fourteen Blastic Plasmacytoid Dendritic Cell Neoplasm patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program as the most significantly undermined (P<.0001). In particular, twenty-five epigenetic-modifiers were found mutated (e.g., ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and Pathology tissue-chromatin immunoprecipitation sequencing experiments; the patients displayed enrichment in gene-signatures regulated by methylation and modifiable by Decitabine administration, shared common H3K27-acetylated regions and featured a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical Blastic Plasmacytoid Dendritic Cell Neoplasm mouse model, established by the CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5'-Azacytidine and Decitabine in controlling the disease progression in vivo

    FIRMA MOLECOLARE E SUOI USI COME AGENTE DIAGNOSTICO

    No full text
    Firma molecolare basata su espressione genica ad uso diagnostico per linfomi a cellule t periferiche nodal
    corecore