3 research outputs found

    Dynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins

    Get PDF
    Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context

    Fermentation and growth kinetic study of Aeromonas caviae under anaerobic conditions

    No full text
    Although Aeromonas caviae is pathogenic to a broad range of invertebrates including human, frequent in aquatic environments, and potentially vital for acidogenesis in anaerobic digestion, virtually no biokinetic information on its anaerobic growth is at hand. Therefore, this study focused on evaluating its anaerobic growth kinetics on glucose. To provide a set of relevant biokinetic coefficients for modeling, a combination of curve fitting and numerical modeling was used. Microcultivations were performed at eight different initial glucose concentrations of 0.1 to 2.5 g l-1 to establish a function of specific growth rate versus substrate concentration. A batch anaerobic bioreactor was then operated to collect a data set for the numerical analysis. Kinetic coefficients were estimated from three different biomass growth profiles monitored by optical density, volatile suspended solids (VSS), or DNA measurement, and applied for simulating continuous operations at various hydraulic retention times (HRTs). Assuming the influent glucose concentration is 5,000 mg l-1, the substrate utilization efficiency predicted to be 77.2% to 92.0% at 17 to 36 h HRTs. For the VSS-model-based simulation, the washout HRT was estimated to be 16.6 h, and similar for the other models. Overall, the anaerobic biokinetic coefficients of A. caviae grown on glucose were successfully estimated and found to follow a substrate inhibition model.close3
    corecore