77 research outputs found

    Hypoxia. HIF-mediated articular chondrocyte function: prospects for cartilage repair

    Get PDF
    In a chronically hypoxic tissue such as cartilage, adaptations to hypoxia do not merely include cell survival responses, but also promotion of its specific function. This review will focus on describing such hypoxia-mediated chondrocyte function, in particular in the permanent articular cartilage. The molecular details of how chondrocytes sense and respond to hypoxia and how this promotes matrix synthesis have recently been examined, and specific manipulation of hypoxia-induced pathways is now considered to have potential therapeutic application to maintenance and repair of articular cartilage

    Characterisation and understanding of the corrosion behaviour of the nugget in a 2050 aluminium alloy Friction Stir Welding joint

    Get PDF
    The corrosion behaviour of the nugget of a Friction Stir Welding joint employing a 2050 Al–Cu–Li alloy was investigated. The results showed that the nugget was susceptible to both intergranular and intragranular corrosion. Such corrosion behaviour was related to microstructural heterogeneities observed on a microscopic scale. Furthermore, heterogeneities in the corrosion behaviour of the nugget observed on a macroscopic scale were evidenced by a different corrosion behaviour from the top to the bottom of the nugget and by a localisation of the corrosion damage related to the ‘‘Onion ring structure’’. Critical microstructural parameters were identified to explain the results

    Thermal energy conversion by coupled shape memory and piezoelectric effects

    Get PDF
    International audienceThis work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE 'machine' which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE 'machine' with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations

    The epigenetic players and the chromatin marks involved in the articular cartilage during osteoarthritis

    Get PDF
    Epigenetics defines the modifications of the genome that do not involve a change in the nucleotide sequence of DNA. These modifications constitute a mechanism of gene regulation poorly explored in the context of cartilage physiology. They are now intensively studied by the scientific community working on articular cartilage and its related pathology such as osteoarthritis. Indeed, epigenetic regulations can control the expression of crucial gene in the chondrocytes, the only resident cells of cartilage. Some epigenetic changes are considered as a possible cause of the abnormal gene expression and the subsequent alteration of the chondrocyte phenotype (hypertrophy, proliferation, senescence…) as observed in osteoarthritic cartilage. Osteoarthritis is a joint pathology, which results in impaired extracellular matrix homeostasis and leads ultimately to the progressive destruction of cartilage. To date, there is no pharmacological treatment and the exact causes have yet to be defined. Given that the epigenetic modifying enzymes can be controlled by pharmacological inhibitors, it is thus crucial to describe the epigenetic marks that enable the normal expression of extracellular matrix encoding genes, and those associated with the abnormal gene expression such as degradative enzyme or inflammatory cytokines encoding genes. In this review, only the DNA methylation and histone modifications will be detailed with regard to normal and osteoarthritic cartilage. Although frequently referred as epigenetic mechanisms, the regulatory mechanisms involving microRNAs will not be discussed. Altogether, this review will show how this nascent field influences our understanding of the pathogenesis of OA in terms of diagnosis and how controlling the epigenetic marks can help defining epigenetic therapies

    Slc20a2, Encoding the Phosphate Transporter PiT2, Is an Important Genetic Determinant of Bone Quality and Strength.

    Get PDF
    Osteoporosis is characterized by low bone mineral density (BMD) and fragility fracture and affects over 200 million people worldwide. Bone quality describes the material properties that contribute to strength independently of BMD, and its quantitative analysis is a major priority in osteoporosis research. Tissue mineralization is a fundamental process requiring calcium and phosphate transporters. Here we identify impaired bone quality and strength in Slc20a2-/- mice lacking the phosphate transporter SLC20A2. Juveniles had abnormal endochondral and intramembranous ossification, decreased mineral accrual, and short stature. Adults exhibited only small reductions in bone mass and mineralization but a profound impairment of bone strength. Bone quality was severely impaired in Slc20a2-/- mice: yield load (-2.3 SD), maximum load (-1.7 SD), and stiffness (-2.7 SD) were all below values predicted from their bone mineral content as determined in a cohort of 320 wild-type controls. These studies identify Slc20a2 as a physiological regulator of tissue mineralization and highlight its critical role in the determination of bone quality and strength. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc

    Adenylate Cyclase Toxin Promotes Internalisation of Integrins and Raft Components and Decreases Macrophage Adhesion Capacity

    Get PDF
    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis

    RSE et réseau des parties prenantes : une norme informationnelle peut-elle émerger ?

    No full text
    International audienceA partir des typologies des parties prenantes proposées par la littérature, cet article explore les conditions d’influence de deux acteurs principaux sur la politique RSE de l’entreprise : les actionnaires et les consommateurs. Selon la théorie du réseau, le pouvoir des parties prenantes est d’autant plus fort qu’elles s’allient et donc partagent leurs attentes et leurs informations au lieu de laisser la centralité à l’entreprise. Mais consommateurs et actionnaires peuvent-ils partager leurs informations ? Alors que les actionnaires ont un socle commun d’évaluation de la RSE, les consommateurs peinent à normaliser leurs attentes. A partir d’entretiens semi-directifs auprès de 20 consommateurs, les résultats concluent en la possibilité d’une convergence car les répondants sont favorables à une information standardisée proche de celle des actionnaires. Toutefois, les consommateurs semblent adopter une défiance de principe à l’égard des actionnaires, ce qui peut compromettre l’efficacité du réseau des parties prenantes sur la RSE
    • …
    corecore