233 research outputs found

    Marine Disease Impacts, Diagnosis, Forecasting, Management and Policy

    Get PDF
    (First paragraph) As Australians were spending millions of dollars in 2014 to remove the coraleating crown of thorns sea star from the Great Barrier Reef, sea stars started washing up dead for free along North America’s Pacific Coast. Because North American sea stars are important and iconic predators in marine communities, locals and marine scientists alike were alarmed by what proved to be the world’s most widespread marine mass mortality in geographical extent and species affected, especially given its mysterious cause. Investigative research using modern diagnostic techniques implicated a never-before-seen virus [1]. The virus inspired international attention to marine diseases, including this theme issue

    Detecting Southern California’s White Sharks With Environmental DNA

    Get PDF
    To improve ability to detect white sharks without the need for tags, or visual census, we developed a species-specific environmental DNA (eDNA) assay that targets a 163 bp fragment of the white shark (Carcharodon carcharias) mitochondrial cytochrome B gene on a digital droplet PCR (ddPCR) platform. We used this marker to detect white shark DNA in 250 ml water samples taken from across two sites in Santa Barbara, California (United States) frequented by juvenile white sharks. We did not detect white shark DNA in samples from two neighboring sites where sharks are presumably absent, suggesting that eDNA can indicate nearby white sharks. This marker development, testing, and opportunistic application in a region with known distributions of white sharks indicates that eDNA could be developed further to monitor white sharks, thereby informing conservation planning and public safety. With the potential increase in white shark populations due to decades of protection, there is a need for fishery independent methods for assessing white shark distributions, and eDNA may provide an ideal, non-intrusive tool for coastal assessments

    The Elusive Baseline of Marine Disease: Are Diseases in Ocean Ecosystems Increasing?

    Get PDF
    Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish), invertebrates (corals, crustaceans, echinoderms), and plants (seagrasses). Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter “disease”) in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups). Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans

    Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change

    Get PDF
    We mapped current and future temperature suitability for malaria transmission in Africa using a published model that incorporates nonlinear physiological responses to temperature of the mosquito vector Anopheles gambiae and the malaria parasite Plasmodium falciparum. We found that a larger area of Africa currently experiences the ideal temperature for transmission than previously supposed. Under future climate projections, we predicted a modest increase in the overall area suitable for malaria transmission, but a net decrease in the most suitable area. Combined with human population density projections, our maps suggest that areas with temperatures suitable for year-round, highest-risk transmission will shift from coastal West Africa to the Albertine Rift between the Democratic Republic of Congo and Uganda, whereas areas with seasonal transmission suitability will shift toward sub-Saharan coastal areas. Mapping temperature suitability places important bounds on malaria transmissibility and, along with local level demographic, socioeconomic, and ecological factors, can indicate where resources may be best spent on malaria control

    Global tropical reef fish richness could decline by around half if corals are lost

    Get PDF
    Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1 degrees scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.Peer reviewe
    • 

    corecore