92 research outputs found

    Prospects for determining air shower characteristics through geosynchrotron emission arrival times

    Get PDF
    Using simulations of geosynchrotron radiation from extensive air showers, we present a relation between the shape of the geosynchrotron radiation front and the distance of the observer to the maximum of the air shower. By analyzing the relative arrival times of radio pulses at several radio antennas in an air shower array, this relation may be employed to estimate the depth of maximum of an extensive air shower if its impact position is known, allowing an estimate for the primary particle's species. Vice versa, the relation provides an estimate for the impact position of the shower's core if an external estimate of the depth of maximum is available. In realistic circumstances, the method delivers reconstruction uncertainties down to 30 g/cm^2 when the distance to the shower core does not exceed 7 km. The method requires that the arrival direction is known with high precision.Comment: 7 pages, 9 figures. Accepted for publication in Astroparticle Physics

    Possibility of Using a Satellite-Based Detector for Recording Cherenkov Light from Ultrahigh-Energy Extensive Air Showers Penetrating into the Ocean Water

    Full text link
    We have estimated the reflected component of Cherenkov radiation, which arises in developing of an extensive air shower with primary energy of 10^20 eV over the ocean surface. It has been shown that, under conditions of the TUS experiment, a flash of the reflected Cherenkov photons at the end of the fluorescence track can be identified in showers with zenith angles up to 20 degrees.Comment: 5 pages, 3 figures. This preprint corrects errors which appeared in the English version of the article published in Bull. Rus. Acad. Sci. Phys., 2011, Vol. 75, No. 3, p. 381. The original russian text was published in Izv. RAN. Ser. Fiz., 2011, Vol. 75, No. 3, p. 41

    Air Shower Measurements with LOFAR

    Get PDF
    Air showers from cosmic rays emit short, intense radio pulses. LOFAR is a new radio telescope, that is being built in the Netherlands and Europe. Designed primarily as a radio interferometer, the core of LOFAR will have a high density of radio antennas, which will be extremely well calibrated. This makes LOFAR a unique tool for the study of the radio properties of single air showers. Triggering on the radio emission from air showers means detecting a short radio pulse and discriminating real events from radio interference. At LOFAR we plan to search for pulses in the digital data stream - either from single antennas or from already beam-formed data - and calculate several parameters characterizing the pulse shape to pick out real events in a second stage. In addition, we will have a small scintillator array to test and confirm the performance of the radio only trigger.Comment: Proceedings of the ARENA 2008 workshop, to be published in NIM

    Universality of electron-positron distributions in extensive air showers

    Get PDF
    Using a large set of simulated extensive air showers, we investigate universality features of electron and positron distributions in very-high-energy cosmic-ray air showers. Most particle distributions depend only on the depth of the shower maximum and the number of particles in the cascade at this depth. We provide multi-dimensional parameterizations for the electron-positron distributions in terms of particle energy, vertical and horizontal momentum angle, lateral distance, and time distribution of the shower front. These parameterizations can be used to obtain realistic electron-positron distributions in extensive air showers for data analysis and simulations of Cherenkov radiation, fluorescence signal, and radio emission.Comment: 13 pages, 22 figures, 1 tabl

    Simulation of propagating EAS Cherenkov radiation over the ocean surface

    Full text link
    We present computing results of the Cherenkov light propagation in air and water from extensive air showers developing over the ocean. Limits on zenith angles of the showers, at which the registration of flashes of reflected Cherenkov photons by the satellite-based detector TUS is possible, are analyzed with consideration for waves on the ocean surface.Comment: 10 pages, 2 figures, 1 table. This preprint corrects errors which appeared in the English version of the article published in Mosc. Univ. Phys. Bull., 2011, Vol. 66, No. 5, p. 478. The original russian text was published in Vest. Mosk. Univ. Fiz., 2011, No. 5, p. 6

    Radio detection of cosmic ray air showers with LOPES

    Get PDF
    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.Comment: 8 pages; Proceedings of the CRIS2006 conference, Catania, Italy; to be published in Nuclear Physics B, Proceedings Supplement

    Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30

    Get PDF
    When Ultra High Energy Cosmic Rays interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating toward the ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas investigating the radio emission from these showers in detail and clarifying if the technique is useful for largescale applications. LOPES-30 is co-located and measures in coincidence with the air shower experiment KASCADE-Grande. Status of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U

    Radio emission of highly inclined cosmic ray air showers measured with LOPES

    Get PDF
    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50^{\circ}, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80^{\circ}. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.Comment: A&A accepte

    On noise treatment in radio measurements of cosmic ray air showers

    Get PDF
    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010, Nantes, Franc

    The LOPES experiment - recent results, status and perspectives

    Full text link
    The LOPES experiment at the Karlsruhe Institute of Technology has been taking radio data in the frequency range from 40 to 80 MHz in coincidence with the KASCADE-Grande air shower detector since 2003. Various experimental configurations have been employed to study aspects such as the energy scaling, geomagnetic dependence, lateral distribution, and polarization of the radio emission from cosmic rays. The high quality per-event air shower information provided by KASCADE-Grande has been the key to many of these studies and has even allowed us to perform detailed per-event comparisons with simulations of the radio emission. In this article, we give an overview of results obtained by LOPES, and present the status and perspectives of the ever-evolving experiment.Comment: Proceedings of the ARENA2010 conference, Nantes, Franc
    corecore