9 research outputs found

    Topological electronic phases in graphene

    Get PDF
    Graphene is a two dimensional material made of single layer of carbon atoms arranging into a honeycomb lattice. It can be synthesized by variety of methods as exfoliation, chemical vapor deposition or organic polymerization. Its electronic properties are not the ones of an insulator nor a metal, being usually known as a zero gap semiconductor. Electrons in graphene behave as massless Dirac fermions, having a zero effective mass. The Dirac equation that governs electrons turns graphene into a material that can easily develop topological states due to Berry phase effects of the Dirac points. Such topological states of matter are characterized for having properties which are independent on the defects and imperfections that the material might have. The two dimensional nature of graphene makes it specially suitable to inherit properties from other materials by proximity effect, as superconductivity or magnetism. In this thesis we will explore by means of theoretical techniques how graphene can show topological insulating states by combination of magnetic fields, electron-electron interaction, spin orbit coupling, exchange and superconducting proximity effects

    Electronic properties of transition metal atoms on Cu2_2N/Cu(100)

    Get PDF
    We study the nature of spin excitations of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co and Ni) deposited on a Cu2_2N/Cu(100) surface using both spin-polarized density functional theory (DFT) and exact diagonalization of an Anderson model derived from DFT. We use DFT to compare the structural, electronic and magnetic properties of different transition metal adatoms on the surface. We find that the average occupation of the transition metal d shell, main contributor to the magnetic moment, is not quantized, in contrast with the quantized spin in the model Hamiltonians that successfully describe spin excitations in this system. In order to reconcile these two pictures, we build a multi-orbital Anderson Hamiltonian for the d shell of the transition metal hybridized with the p orbitals of the adjacent Nitrogen atoms, by means of maximally localized Wannier function representation of the DFT Hamiltonian. The exact solutions of this model have quantized total spin, without quantized charge at the d shell. We propose that the quantized spin of the models actually belongs to many-body states with two different charge configurations in the d shell, hybridized with the p orbital of the adjacent Nitrogen atoms. This scenario implies that the measured spin excitations are not fully localized at the transition metal.Comment: 12 pages, 14 figures, regular articl

    Electronic properties of transition metal atoms on Cu2_2N/Cu(100)

    Get PDF
    We study the nature of spin excitations of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co and Ni) deposited on a Cu2_2N/Cu(100) surface using both spin-polarized density functional theory (DFT) and exact diagonalization of an Anderson model derived from DFT. We use DFT to compare the structural, electronic and magnetic properties of different transition metal adatoms on the surface. We find that the average occupation of the transition metal d shell, main contributor to the magnetic moment, is not quantized, in contrast with the quantized spin in the model Hamiltonians that successfully describe spin excitations in this system. In order to reconcile these two pictures, we build a multi-orbital Anderson Hamiltonian for the d shell of the transition metal hybridized with the p orbitals of the adjacent Nitrogen atoms, by means of maximally localized Wannier function representation of the DFT Hamiltonian. The exact solutions of this model have quantized total spin, without quantized charge at the d shell. We propose that the quantized spin of the models actually belongs to many-body states with two different charge configurations in the d shell, hybridized with the p orbital of the adjacent Nitrogen atoms. This scenario implies that the measured spin excitations are not fully localized at the transition metal.Comment: 12 pages, 14 figures, regular articl

    Electrically controllable magnetism in twisted bilayer graphene

    Full text link
    Twisted graphene bilayers develop highly localised states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic (AF) and a ferromagnetic (F) polarization of said regions, depending on the electrical bias between layers. Remarkably, F-polarised AA regions under bias develop spiral magnetic ordering, with a relative 120120^\circ misalignment between neighbouring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions, with interesting potential also for a range of applications.Comment: 7 pages, 3 figures. Minor correction

    Single spin resonance driven by electric modulation of the g-factor anisotropy

    Get PDF
    We address the problem of electronic and nuclear spin resonance of an individual atom on a surface driven by a scanning tunneling microscope. Several mechanisms have been proposed so far, some of them based on the modulation of exchange and crystal field associated with a piezoelectric displacement of the adatom driven by the radio frequency (RF) tip electric field. Here we consider another mechanism, where the piezoelectric displacement modulates the g -factor anisotropy, leading both to electronic and nuclear spin flip transitions. We discuss thoroughly the cases of hydrogenated Ti ( S = 1 / 2 ) and Fe ( S = 2 ) on MgO, relevant for recent experiments. We model the system using two approaches. First, an analytical model that includes crystal field, spin orbit coupling, and hyperfine interactions. Second, we carry out density-functional-based calculations. We find that the modulation of the anisotropy of the g tensor due to the piezoelectric displacement of the atom is an additional mechanism for scanning tunneling microscopy (STM)-based single spin resonance that would be effective in S = 1 / 2 adatoms with large spin orbit coupling. In the case of hydrogenated Ti on MgO, we predict a modulation spin resonance frequency driven by the DC electric field of the tip.Fil: Ferrón, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; ArgentinaFil: Rodriguez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; ArgentinaFil: Gomez, Sergio Santiago. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Lado, Jose Luis. Aalto University; FinlandiaFil: Fernandez Rossier, Joaquín. International Iberian Nanotechnology Laboratory; Portugal. Universidad de Alicante; Españ

    Design and Synthesis of Highly Active Al-Ni-P Foam Electrode for Hydrogen Evolution Reaction

    No full text
    © 2015 American Chemical Society. An effective method to boost the electrocatalytic activity of nickel phosphides in H2 evolution reaction is reported. The method took advantage of density functional theory calculations that allowed the design of a highly active material based on the combination of d-metal with p-metal within a phosphide structure. Furthermore, the principle is proven experimentally through successful synthesis of self-supported ternary Al-Ni-P foam electrocatalyst by alloying of Ni and Al followed by the gas transport phosphorization reaction. As a cathode for H2 evolution reaction in acidic electrolyte, Al-Ni-P significantly outperforms pure Ni-P, and it has an exchange current density of 0.6 mA/cm2 and a Tafel slope of 65 mV/decade.status: publishe

    Interface Engineering in Nanostructured Nickel Phosphide for Efficient and Stable Water Oxidation

    No full text
    An approach to significantly enhance the performance of the cost-effective nickel phosphide catalyst for electrochemical water oxidation has been developed via interfacing with Mg oxide-hydroxide. We have synthesized Ni2P nanoparticles anchored on Mg2O(OH)2-like phase supported on carbon paper. During the oxygen evolution reaction, the well-defined Ni2P nanoparticles serve as precursors for the immediate formation of active and stable nanostructured nickel hydroxide catalyst. As the anode for the oxygen evolution reaction in an alkaline electrolyte, the electrode shows a modest Tafel slope of 48 mV dec–1 and a large turnover frequency of 0.05 s–1 at an overpotential of 0.4 V. Microstructure and composition studies of the catalyst suggest that interfacial strain between Mg- and Ni-containing phases is responsible for high catalytic activity. A significant increase in catalytic activity upon the combination of magnesium compound and transition-metal phosphide suggests an interesting strategy for the controlled and reproducible preparation of active Earth-abundant oxygen-evolving catalysts
    corecore