412 research outputs found

    Phytonanofabrication: Methodology and Factors Affecting Biosynthesis of Nanoparticles

    Get PDF
    The greener way of producing silver nanoparticles is the easiest, cheapest and most efficient way of producing large-scale nanoparticles that have no adverse effect on the environment. The nanosynthesis using various methodologies and the biological synthesis of silver nanoparticles have been discussed in detail. Plant extracts have been known to be competent for the extracellular biosynthesis of silver nanoparticles suggested by the various publications. Further, effects of various sources and methods on nanoparticle synthesis have been examined. Additionally, the impact of conditions such as dark, light, heating, boiling, sonication, autoclave on the size and shape of colloidal nanoparticles has been analyzed. Moreover, effects of specific parameters such as leaf extract concentration, AgNO3, reaction temperature, pH, light and stirring time for nanoparticle synthesis are discussed, and the impact of silver nanoparticles on plant physiology has examined

    Searching for optimal variables in real multivariate stochastic data

    Full text link
    By implementing a recent technique for the determination of stochastic eigendirections of two coupled stochastic variables, we investigate the evolution of fluctuations of NO2 concentrations at two monitoring stations in the city of Lisbon, Portugal. We analyze the stochastic part of the measurements recorded at the monitoring stations by means of a method where the two concentrations are considered as stochastic variables evolving according to a system of coupled stochastic differential equations. Analysis of their structure allows for transforming the set of measured variables to a set of derived variables, one of them with reduced stochasticity. For the specific case of NO2 concentration measures, the set of derived variables are well approximated by a global rotation of the original set of measured variables. We conclude that the stochastic sources at each station are independent from each other and typically have amplitudes of the order of the deterministic contributions. Such findings show significant limitations when predicting such quantities. Still, we briefly discuss how predictive power can be increased in general in the light of our methods

    Solid behavior of anisotropic rigid frictionless bead assemblies

    Get PDF
    We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent results [1], we show that the material, despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape of the yield surface is adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion. While scalar state variables keep the same values as in isotropic systems, fabric and force anisotropies are each characterized by one parameter and are in one-to-one correspondence with principal stress ratio along all three loading paths.The anisotropy of the pair correlation function extends to a distance between bead surfaces on the order of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths are also discussed

    The structure of Chariklo's rings from stellar occultations

    Get PDF
    Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo's system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3\pm 3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ∼5\sim 5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R's edges is available. A 1σ\sigma upper limit of ∼20\sim 20 m is derived for the equivalent width of narrow (physical width <4 km) rings up to distances of 12,000 km, counted in the ring plane

    Primary diffuse large B-cell lymphoma of the breast: prognostic factors and outcomes of a study by the International Extranodal Lymphoma Study Group

    Get PDF
    Background: Primary diffuse large B-cell lymphoma (DLBCL) of breast is rare. We aimed to define clinical features, prognostic factors, patterns of failure, and treatment outcomes. Patients and methods: A retrospective international study of 204 eligible patients presenting to the International Extranodal Lymphoma Study Group-affiliated institutions from 1980 to 2003. Results: Median age was 64 years, with 95% of patients presenting with unilateral disease. Median overall survival (OS) was 8.0 years, and median progression-free survival 5.5 years. In multifactor analysis, favourable International Prognostic Index score, anthracycline-containing chemotherapy, and radiotherapy (RT) were significantly associated with longer OS (each P ≤ 0.03). There was no benefit from mastectomy, as opposed to biopsy or lumpectomy only. At a median follow-up time of 5.5 years, 37% of patients had progressed—16% in the same or contralateral breast, 5% in the central nervous system, and 14% in other extranodal sites. Conclusions: The combination of limited surgery, anthracycline-containing chemotherapy, and involved-field RT produced the best outcome in the pre-rituximab era. A prospective trial on the basis of these results should be pursued to confirm these observations and to determine whether the impact of rituximab on the patterns of relapse and outcome parallels that of DLBCL presenting at other site

    A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding

    Get PDF
    This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ2 − σ3)/(σ1 − σ3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane

    Earth system justice needed to identify and live within Earth system boundaries

    Get PDF
    Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries

    Matching scope, purpose and uses of planetary boundaries science

    Get PDF
    Background: The Planetary Boundaries concept (PBc) has emerged as a key global sustainability concept in international sustainable development arenas. Initially presented as an agenda for global sustainability research, it now shows potential for sustainability governance. We use the fact that it is widely cited in scientific literature (>3500 citations) and an extensively studied concept to analyse how it has been used and developed since its first publication. Design: From the literature that cites the PBc, we select those articles that have the terms 'planetary boundaries' or 'safe operating space' in either title, abstract or keywords. We assume that this literature substantively engages with and develops the PBc. Results: We find that 6% of the citing literature engages with the concept. Within this fraction of the literature we distinguish commentaries—that discuss the context and challenges to implementing the PBc, articles that develop the core biogeophysical concept and articles that apply the concept by translating to sub-global scales and by adding a human component to it. Applied literature adds to the concept by explicitly including society through perspectives of impacts, needs, aspirations and behaviours. Discussion: Literature applying the concept does not yet include the more complex, diverse, cultural and behavioural facet of humanity that is implied in commentary literature. We suggest there is need for a positive framing of sustainability goals—as a Safe Operating Space rather than boundaries. Key scientific challenges include distinguishing generalised from context-specific knowledge, clarifying which processes are generalizable and which are scalable, and explicitly applying complex systems' knowledge in the application and development of the PBc. We envisage that opportunities to address these challenges will arise when more human social dimensions are integrated, as we learn to feed the global sustainability vision with a plurality of bottom-up realisations of sustainability
    • …
    corecore