27 research outputs found

    Responses of floodplain birds to high-amplitude precipitation fluctuations over two decades

    Get PDF
    Globally, high-amplitude variation in weather (e.g. precipitation) is increasing in frequency and magnitude. This appears to be so for the southern Murray-Darling Basin, Australia, where droughts of unprecedented (in the instrumental record, extending back to the mid-1800s) depth and duration (1997–first half of 2010; second half of 2012–) are being punctuated by extreme wet periods, albeit of shorter duration (‘Big Wet’, second half of 2010–first half of 2012). We have previously reported on the responses of floodplain-forest birds to the cessation of the longest recorded drought (‘Big Dry’, 1997–first half of 2010), but we found little evidence of a rebound, at least shortly after the Big Wet. However, we reasoned that there may have been insufficient time for the birds to have responded in that short time, so we repeated the survey program 5 years after the end of the Big Wet (2017). Bird occurrences, reproductive activity and success were substantially greater compared with late in the Big Dry (2009) than they had been soon after the Big Wet (2013). However, bird occurrences still fell well below measurements in the early-Big Dry (1998), so that the avifauna appears to be in decline, most probably because the length of drought periods far exceeds that of wet periods giving the birds too little time to recover fully. © 2022 The Authors. Austral Ecology published by John Wiley & Sons Australia, Ltd on behalf of Ecological Society of Australia

    Zoo Basel Newsletter. 2013, Juli

    Get PDF
    Climate change alters the frequency and severity of extreme events, such as drought. Such events will be increasingly important in shaping communities as climate change intensifies. The ability of species to withstand extreme events (resistance) and to recover once adverse conditions abate (resilience) will determine their persistence. We estimated the resistance and resilience of bird species during and after a 13-year drought (the \u27Big Dry\u27) in floodplain forests in south-eastern Australia. We conducted bird surveys at the beginning and end of the Big Dry, and after the abrupt end to the drought (the \u27Big Wet\u27), to evaluate species-specific changes in reporting rates among the three periods. We assessed changes in bird-breeding activity before and after the Big Wet to estimate demographic resilience based on breeding. Between the start and the end of the Big Dry (1998 vs. 2009), 37 of 67 species declined substantially. Of those, only two had increased reporting rates after the Big Wet (2009 vs. 2013) that were equal to or larger than their declines, while three partially recovered. All other declining species showed low resilience: 25 showed no change in reporting rates and seven declined further. The number of breeding species and total breeding activity of all species declined after the Big Wet, and there was no change in the number of young produced. The Big Dry caused widespread declines in the floodplain avifauna. Despite the drought being broken by 2 years of well-above-average rainfall and subsequent near-average rainfall, most species showed low resilience and there was little indication that overall breeding had increased. The effects of drought appeared to be pervasive for much of the floodplain avifauna, regardless of species traits (species body mass, fecundity, mobility or diet). Ecosystems such as these are likely to require active management and restoration, including reinstatement of natural flooding regimes, to improve ecological condition, to enhance resistance and resilience to extreme climate events

    Relating demographic characteristics of a small mammal to remotely sensed forest-stand condition

    Get PDF
    Many ecological systems around the world are changing rapidly in response to direct (land-use change) and indirect (climate change) human actions. We need tools to assess dynamically, and over appropriate management scales, condition of ecosystems and their responses to potential mitigation of pressures. Using a validated model, we determined whether stand condition of floodplain forests is related to densities of a small mammal (a carnivorous marsupial, Antechinus flavipes) in 60 000 ha of extant river red gum (Eucalyptus camaldulensis) forests in south-eastern Australia in 2004, 2005 and 2011. Stand condition was assessed remotely using models built from ground assessments of stand condition and satellite-derived reflectance. Other covariates, such as volumes of fallen timber, distances to floods, rainfall and life stages were included in the model. Trapping of animals was conducted at 272 plots (0.25 ha) across the region. Densities of second-year females (i.e. females that had survived to a second breeding year) and of second-year females with suckled teats (i.e. inferred to have been successful mothers) were higher in stands with the highest condition. There was no evidence of a relationship with stand condition for males or all females. These outcomes show that remotely-sensed estimates of stand condition (here floodplain forests) are relatable to some demographic characteristics of a small mammal species, and may provide useful information about the capacity of ecosystems to support animal populations. Over-regulation of large, lowland rivers has led to declines in many facets of floodplain function. If management of water resources continues as it has in recent decades, then our results suggest that there will be further deterioration in stand condition and a decreased capacity for female yellow-footed antechinuses to breed multiple times
    corecore