46 research outputs found

    Corpus Callosum Morphology in Capuchin Monkeys Is Influenced by Sex and Handedness

    Get PDF
    Sex differences have been reported in both overall corpus callosum area and its regional subdivisions in humans. Some have suggested this reflects a unique adaptation in humans, as similar sex differences in corpus callosum morphology have not been reported in any other species of primate examined to date. Furthermore, an association between various measurements of corpus callosum morphology and handedness has been found in humans and chimpanzees. In the current study, we report measurements of corpus callosum cross-sectional area from midsagittal MR images collected in vivo from 14 adult capuchin monkeys, 9 of which were also characterized for hand preference on a coordinated bimanual task. Adult females were found to have a significantly larger corpus callosum: brain volume ratio, rostral body, posterior midbody, isthmus, and splenium than adult males. Left-handed individuals had a larger relative overall corpus callosum area than did right-handed individuals. Additionally, a significant sex and handedness interaction was found for anterior midbody, with right-handed males having a significantly smaller area than right-handed females. These results suggest that sex and handedness influences on corpus callosum morphology are not restricted to Homo sapiens

    Time courses of left and right amygdalar responses to fearful facial expressions

    No full text
    Despite the many studies highlighting the role of the amygdala in fear perception, few have examined differences between right and left amygdalar responses. Using functional magnetic resonance imaging (fMRI), we examined neural responses in three groups of healthy volunteers (n = 18) to alternating blocks of fearful and neutral faces. Initial observation of extracted time series of both amygdalae to these stimuli indicated more rapid decreases of right than left amygdalar responses to fearful faces, and increasing magnitudes of right amygdalar responses to neutral faces with time. We compared right and left responses statistically by modeling each time series with (1) a stationary fit model (assuming a constant magnitude of amygdalar response to consecutive blocks of fearful faces) and (2) an adaptive model (no assumptions). Areas of significant sustained nonstationarity (time series points with significantly greater adaptive than stationary model fits) were demonstrated for both amygdalae. There was more significant nonstationarity of right than left amygdalar responses to neutral, and left than right amygdalar responses to fearful faces. These findings indicate significant variability over time of both right and left amygdalar responses to fearful and neutral facial expressions and are the first demonstration of specific differences in time courses of right and left amygdalar responses to these stimuli
    corecore