78 research outputs found
Literacy in Lockdown: Learning and Teaching During COVID‐19 School Closures
Across the globe, students have been away from schools and their teachers, but literacy learning has continued. In many countries, students’ literacy proficiency is often measured via high‐stakes assessment tests. However, such tests do not make visible students’ literacy lives away from formal learning settings, so students are positioned as task responders, rather than as agentive readers and writers. The authors explore the fluidity and diversity of literacy events and practices for students and their teachers observed during the recent period of COVID‐19 lockdown restrictions
Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison
Knowledge of the relative stabilities of alane (AlH3) complexes with electron
donors is essential for identifying hydrogen storage materials for vehicular
applications that can be regenerated by off-board methods; however, almost no
thermodynamic data are available to make this assessment. To fill this gap, we
employed the G4(MP2) method to determine heats of formation, entropies, and
Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn
(R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA),
quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran
(THF). Monomer, bis, and selected dimer complex geometries were considered.
Using these data, we computed the thermodynamics of the key formation and
dehydrogenation reactions that would occur during hydrogen delivery and alane
regeneration, from which trends in complex stability were identified. These
predictions were tested by synthesizing six amine-alane complexes involving
trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and
hexamine, and obtaining upper limits of delta G for their formation from
metallic aluminum. Combining these computational and experimental results, we
establish a criterion for complex stability relevant to hydrogen storage that
can be used to assess potential ligands prior to attempting synthesis of the
alane complex. Based on this, we conclude that only a subset of the tertiary
amine complexes considered and none of the ether complexes can be successfully
formed by direct reaction with aluminum and regenerated in an alane-based
hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry
3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls
The authors would like to thank the Science and Technology Facilities Council for fundamental physics and computing resources that were provided by funding from STFC’s Scientific Computing Department, and would like to thank the European Research Council (ERC 2010 AdG Grant 267841) and FCT (Portugal) grants SFRH/BD/75558/2010 for support.Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the "lunar swirls" and "dark lanes." Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.Publisher PDFPeer reviewe
Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry
The analytical capabilities of liquid chromatography with single-stage high-resolution mass spectrometry have been investigated with emphasis on qualitative aspects related to selective detection during screening and to identification. The study involved 21 different vegetable and fruit commodities, a screening database of 556 pesticides for evaluation of false positives, and a test set of 130 pesticides spiked to the commodities at 0.01, 0.05, and 0.20 mg/kg for evaluation of false negatives. The final method involved a QuEChERS-based sample preparation (without dSPE clean up) and full scan acquisition using alternating scan events without/with fragmentation, at a resolving power of 50,000. Analyte detection was based on extraction of the exact mass (±5 ppm) of the major adduct ion at the database retention time ±30 s and the presence of a second diagnostic ion. Various options for the additional ion were investigated and compared (other adduct ions, M + 1 or M + 2 isotopes, fragments). The two-ion approach for selective detection of the pesticides in the full scan data was compared with two alternative approaches based on response thresholds. Using the two-ion approach, the number of false positives out of 11,676 pesticide/commodity combinations targeted was 36 (0.3 %). The percentage of false negatives, assessed for 2,730 pesticide/commodity combinations, was 13 %, 3 %, and 1 % at the 0.01-, 0.05-, and 0.20-mg/kg level, respectively (slightly higher with fully automated detection). Following the SANCO/12495/2011 protocol for validation of screening methods, the screening detection limit was determined for 130 pesticides and found to be 0.01, 0.05, and ≥0.20 mg/kg for 86, 30, and 14 pesticides, respectively. For the detected pesticides in the spiked samples, the ability for unambiguous identification according to EU criteria was evaluated. A proposal for adaption of the criteria was made
Boronic acids for sensing and other applications - a mini-review of papers published in 2013
Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013
PREDATORY BEHAVIOR OF GOVERNMENTS: THE CASE OF MASS KILLING
In this paper we seek to answer the question: why do governments engage in mass killing? Tullock (1974) gives gain or avoidance of loss as the motive. We construct a three-stage theoretic framework to explain the choice of a ruler of a country. The conditions that must be met for a mass killing regime to win over alternative regimes are derived. Using the COW project data over the period 1816-1997, we estimate two models: negative binomial regression of number of battle-related deaths and a probit model for the choice of mass killing. The paper concludes with suggestions for data collections and further research.Mass killing, Vertical differentiation,
- …