936 research outputs found

    A search for energy deposition by neutrinos in matter

    Get PDF
    An exploratory search for an anomalous energy deposition by neutrinos in a germanium crystal was performed in the CERN high energy neutrino beam. No signal was found and a limit is set at a level of about 10^-12 of the normal dE/dx for a minimum ionizing particle.Comment: 7 pages, 3 figures Paper accepted by Physics Letters B on March 4th, 199

    Two linear-time algorithms for computing the minimum length polygon of a digital contour

    Get PDF
    AbstractThe Minimum Length Polygon (MLP) is an interesting first order approximation of a digital contour. For instance, the convexity of the MLP is characteristic of the digital convexity of the shape, its perimeter is a good estimate of the perimeter of the digitized shape. We present here two novel equivalent definitions of MLP, one arithmetic, one combinatorial, and both definitions lead to two different linear time algorithms to compute them. This paper extends the work presented in Provençal and Lachaud (2009) [26], by detailing the algorithms and providing full proofs. It includes also a comparative experimental evaluation of both algorithms showing that the combinatorial algorithm is about 5 times faster than the other. We also checked the multigrid convergence of the length estimator based on the MLP

    Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive endoparasitoid of gyne ant larvae

    Get PDF
    The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts.Peer reviewe

    Angular Power Spectrum Estimation of Cosmic Ray Anisotropies with Full or Partial Sky Coverage

    Full text link
    We study the angular power spectrum estimate in order to search for large scale anisotropies in the arrival directions distribution of the highest-energy cosmic rays. We show that this estimate can be performed even in the case of partial sky coverage and validated over the full sky under the assumption that the observed fluctuations are statistically spatial stationary. If this hypothesis - which can be tested directly on the data - is not satisfied, it would prove, of course, that the cosmic ray sky is non isotropic but also that the power spectrum is not an appropriate tool to represent its anisotropies, whatever the sky coverage available. We apply the method to simulations of the Pierre Auger Observatory, reconstructing an input power spectrum with the Southern site only and with both Northern and Southern ones. Finally, we show the improvement that a full-sky observatory brings to test an isotropic distribution, and we discuss the sensitivity of the Pierre Auger Observatory to large scale anisotropies.Comment: 16 pages, 6 figures, version accepted for publication by JCA

    Revisiting Digital Straight Segment Recognition

    Full text link
    This paper presents new results about digital straight segments, their recognition and related properties. They come from the study of the arithmetically based recognition algorithm proposed by I. Debled-Rennesson and J.-P. Reveill\`es in 1995 [Debled95]. We indeed exhibit the relations describing the possible changes in the parameters of the digital straight segment under investigation. This description is achieved by considering new parameters on digital segments: instead of their arithmetic description, we examine the parameters related to their combinatoric description. As a result we have a better understanding of their evolution during recognition and analytical formulas to compute them. We also show how this evolution can be projected onto the Stern-Brocot tree. These new relations have interesting consequences on the geometry of digital curves. We show how they can for instance be used to bound the slope difference between consecutive maximal segments

    A hierarchical approach with triangulated surfaces for 3D data segmentation

    Get PDF
    This article presents a new algorithm for segmenting three-dimensional images . It is based on a dynamic triangulated surface an d on a pyramidal representation . The triangulated surface, which follows a physical modelization and which can as well modify its geometry as its topology, segments images into their components by altering its shape according to internal and externa l constraints . In order to speed up the whole process, an algorithm of pyramid building with any reduction factor allows us t o transform the image into a set of images with progressive resolutions . This organization into a hierarchy, combined with a model that can adapt its mesh refinement to the resolution of the workspace, authorizes a fast estimation of the general forms included i n the image. After that, the model searches for finer and finer details while relying successively on the different levels of the pyramid.Ce travail présente un algorithme de segmentation d'images tridimensionnelles par utilisation de surfaces triangulées et de pyramides. Une triangulation de surface dynamique, dotée d'une modélisation physique et capable de changer sa topologie, va, en se déformant suivant certaines contraintes, segmenter l'image en ses constituants. Afin d'accélérer le processus, un algorithme de construction de pyramide de facteur de réduction quelconque permet de transformer l'image en un ensemble d'images de résolution progressive. Cette hiérarchisation, couplée à un modÚle capable d'adapter la précision de sa maille à la résolution de son espace de travail, permet d'estimer trÚs rapidement les formes générales contenues dans une image. Une fois ceci fait, le modÚle recherche les détails de plus en plus petits en s'appuyant successivement sur les différents niveaux de la pyramide

    Numerical Investigation on Charring Ablator Geometric Effects: Study of Stardust Sample Return Capsule Heat Shield

    Get PDF
    Sample geometry is very influential in small charring ablative articles where 1D assumption might not be accurate. In heat shield design, 1D is often assumed since the nose radius is much larger than the thickness of charring. Whether the 1D assumption is valid for the heat shield is unknown. Therefore, the geometric effects of Stardust sample return capsule heat shield are numerically studied using a material response program. The developed computer program models material charring, conductive heat transfer, surface energy balance, pyrolysis gas transport and orthotropic material properties in 3D Cartesian coordinates. Simulation results show that the centerline temperatures predicted by 3D model are quite close to 1D model at the surface, but not the case inside the material. The pyrolysis surface gas blowing behaviors are quite similar but differences are observed at later time. Orthotropic model predicted a very different heat shield response to both the isotropic model and the 1D model

    Numerical Investigation of Pyrolysis Gas Blowing Pattern and Thermal Response using Orthotropic Charring Ablative Material

    Get PDF
    An orthotropic material model is implemented in a three-dimensional material response code, and numerically studied for charring ablative material. Model comparison is performed using an iso-Q sample geometry. The comparison is presented using pyrolysis gas streamlines and time series of temperature at selected virtual thermocouples. Results show that orthotropic permeability affects both pyrolysis gas flow and thermal response, but orthotropic thermal conductivity essentially changes the thermal performance of the material. The effect of orthotropic properties may have practical use such that the material performance can be manipulated by altering the angle of orthotropic orientation
    • 

    corecore