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a b s t r a c t

The Minimum Length Polygon (MLP) is an interesting first order approximation of a digital
contour. For instance, the convexity of the MLP is characteristic of the digital convexity
of the shape, its perimeter is a good estimate of the perimeter of the digitized shape. We
present here two novel equivalent definitions of MLP, one arithmetic, one combinatorial,
and both definitions lead to two different linear time algorithms to compute them. This
paper extends the work presented in Provençal and Lachaud (2009) [26], by detailing
the algorithms and providing full proofs. It includes also a comparative experimental
evaluation of both algorithms showing that the combinatorial algorithm is about 5 times
faster than the other. We also checked the multigrid convergence of the length estimator
based on the MLP.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The minimum length polygon (MLP) or minimum perimeter polygon was proposed long ago for approaching the
geometry of a digital contour [25,30]. One of its definitions is to be the polygon of minimum perimeter which stays in
the band of 1 pixel-wide centered on the digital contour. It has many interesting properties such as: (i) it is reversible [25];
(ii) it is characteristic of the convexity of the digitized shape and it minimizes the number of inflexion points to represent
the contour [30,15]; (iii) it is a good digital length estimator [19,6] and is proven to be multigrid convergent in O(h) for
digitization of convex shapes, where h is the grid step (reported in [18,31,32]); (iv) it is also a good tangent estimator; (v) it
is the relative convex hull of the digital contour with respect to the outer pixels [30,33] and is therefore exactly the convex
hull when the contour is digitally convex.

Several algorithms for computing the MLP have been published. We have already presented the variational definition of
the MLP (length minimizer). It can thus be solved by a nonlinear programming method. The initial computation method
of [25] was indeed an interactive Newton–Raphson algorithm. Computational complexity is clearly not linear and the
solution is not exact. We have also mentioned its set theoretic definition (intersection of relative convex sets). However,
except for digital convex shapes, this definition does not lead to a specific algorithm. TheMLPmay also be seen as a solution
to a shortest path query in somewell chosen polygon. An adaptation of [14] to digital contour could be implemented in time
linear with the size of the contour. It should however be noted that data structures and algorithms involved are complex
and difficult to implement. Klette et al. [17] (see also [19,18]) have also proposed an arithmetic algorithm to compute it, but
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as it is presented, it does not seem to compute the MLP in all cases. As reported in [9], its edges seem restricted to digital
straight segments such that the continued fraction of their slope has a complexity no greater than two.

The MLP is in some sense characteristic of a digital contour. One may expect to find strong related arithmetic and
combinatorial properties. This is precisely the purpose of this paper. Furthermore, we show that each of these definitions
induces an optimal time integer-only algorithm for computing it. The combinatorial algorithm is particularly simple and
elegant, while the arithmetic definition is essential for proving it defines the MLP. These two new definitions give a better
understanding of what is the MLP in the digital world. Although other linear-time algorithms exist, the two proposed
algorithms are simpler than existing ones. They are thus easier to implement and their constants are better.

The paper is organized as follows. First Section 2 recalls standard definitions. Section 3 gives formally the above-
mentioned alternative definitions of theMLP. Section 4 presents how to split uniquely a digital contour into convex, concave
and inflexion zones, the arithmetic definition ofMLP follows then naturally. Section 5 is devoted to the combinatorial version
of MLP. After establishing its equivalence with the arithmetic MLP, we show that our algorithm constructs it in linear time.
Section 6 illustrates our results and concludes.

This paper is an extended version of [26]. We provide here full proofs and further examples. We also note that an
algorithm for computing theMLPhas just beenproposed independently byRoussillon et al. (to appear in [28]): it is extremely
similar in spirit to our arithmetic algorithm since its computation relies also onmaximal segment recognition. However our
combinatorial MLP should still be much faster in practice since it does not compute the geometry of segments along the
shape.

2. Preliminaries

This section presents the standard definitions that we will used throughout the paper, in order to avoid any ambiguity.

2.1. Polyomino, digital contour, inner and outer polygon

Given some set X in the plane, its topological interior will be denoted by X◦ while its topological boundarywill be denoted
by ∂X .

A digital square is a unit closed axis-aligned square in the plane whose center has integer coordinates. A polyomino is a
set of digital squares in the plane such that its topological boundary is a Jordan curve. It is thus bounded. It is convenient to
represent a polyomino as a subset of the digital plane Z2, which codes the integer coordinates of the centers of its squares,
instead of representing it as a subset of the Euclidean plane R2. When seeing a polyomino as a subset of R2, we will say the
body of the polyomino. For instance, the Gauss digitization of a convex subset of the plane is a polyomino iff it is 4-connected.
A subset of Z2, or digital shape, is a polyomino iff it is 4-connected and its complement is 4-connected.

In the following, we call digital contour the boundary of any polyomino, represented as a sequence of horizontal and
vertical steps in the half-integer plane


Z+ 1

2


×


Z+ 1

2


. One can use for instance a Freeman chain to code it as aword over

the alphabet {0, 1, 2, 3}. Thesewords are usually called contourwords. Again, the body of a digital contour is its embedding in
R2 as a polygonal curve. Now, since the body of a digital contour is a Jordan curve, it has one well-defined inner component
in R2, whose closure is exactly the polyomino whose boundary is the digital contour. There is thus a one-to-one map from
digital contours to polyominoes, denoted by I.

Let Sq be the digital square centered at (0, 0) and let⊕ denotes the Minkowski sum of two sets.
We only deal in this paper with simple digital contours (or grid continua in the terminology of [32]). A digital contour C is

simple if and only if: (i) any digital point of a digital contour C has exactly in its 4-neighborhood two other digital points of C ,
(ii) the one pixel-wide band C ⊕ Sq is an annulus whose topological boundary is composed of two simple closed polygonal
lines.

Each of these lines induces a finite simple polygon by Jordan’s theorem. The one included in the body of I(C) is called the
inner polygon of C and is denoted by L1(C). The other one is the outer polygon of C and is denoted by L2(C). We have thus by
definition that C ⊕ Sq = L2(C) \ L1(C)◦. It is easy to check that all digital points on ∂L1(C) are in the polyomino I(C) while
all digital points on ∂L2(C) are not in the polyomino I(C). These notions are illustrated on Fig. 1.

2.2. Maximal segments; tangential cover; turns

A standard digital straight line (DSL) is some set {(x, y) ∈ Z2, µ ≤ ax−by < µ+|a|+|b|}, where (a, b, µ) are also integers
and gcd(a, b) = 1. It is well known that a DSL is a 4-connected simple path in the digital plane, which is the digitization of a
Euclidean straight line of slope a

b and shift to origin−µ

b [27,7]. A digital straight segment (DSS) is a 4-connected piece of DSL.
Given a digital contour C , a maximal segment M is a subset of C that is a DSS and which is no more a DSS when adding any
other point of C \M .

We recall that the tangential cover of a digital contour is the ordered sequence of its maximal segments [12]. In the
following, the tangential cover is denoted by (Ml)l=0···m−1, where Ml is the l-th maximal segment of the contour. Let us
denote by θl the slope direction (angle wrt x-axis) of Ml. All indices are taken modulo the number m of maximal segments.
Since the directions of two consecutive maximal segments can differ of no greater than π , their variation of direction can
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Fig. 1. A digital contour C with its inner polygon L1(C), its outer polygon L2(C) and its MLP.

Fig. 2. Left: digital contour, tangential cover. Right: inside and outside pixels and, in red, edges of AMLP(C) in a convex part of C . (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

always be casted in ] − π, π[ without ambiguity. The angle variation (θl − θl+1) mod [−π, π[ is denoted by ∆(θl, θl+1).
For clarity, we will also write θl > θl+1 when ∆(θl, θl+1) > 0. We always consider the digital contour to turn clockwise
around the polyomino. A couple of consecutivemaximal segments (Ml,Ml+1) is thus said to be a∧-turn (resp.∨-turn) when
∆(θl, θl+1) is negative (resp. positive). The symbol ∧ stands for ‘‘convex’’ while the symbol ∨ stands for ‘‘concave’’.

Since a maximal segment is contained in a digital straight line, it is formed of exactly two kinds of steps, with Freeman
codes c and (c+1) mod 4. This coding defines the quadrant of themaximal segment. Its quadrant vector is then the diagonal
vector that is the sum of the two unit steps coded by the Freeman codes of the quadrant, rotated by+π

2 .
We eventually associate pixels to contour points (Ci) as follows:

• the inside pixel in(Ci) of Ci is the pixel Ci−
−→v
2 , where−→v is the quadrant vector of any maximal segment containing it (or

the last maximal segment strictly containing it at a quadrant change).
• the outside pixel out(Ci) of Ci is the pixel Ci +

−→v
2 , where−→v is the quadrant vector of any maximal segment containing it

(or the last maximal segment strictly containing it at a quadrant change).

Fig. 2 illustrates these definitions. It is clear that inside pixels belong to ∂L1(C) and outside pixels to ∂L2(C).

3. Existing definitions of the MLP

We recall and give formally several definitions for the MLP of a digital contour. The first one relates it to the standard
convex hull for convex digital contours. The second one extends naturally this definition to arbitrary simple contours as the
intersection of specific subsets of the plane. This definition of MLP is themost convenient in our case for proving our results.
The third one is the classical definition of MLP as the solution to a variational problem.

3.1. Variational definition

Following the works of Sloboda et al. [31,34,33] (or see [17,18]), we define the minimum length polygon (MLP) of C as
the shortest Jordan curve whose digitization is (very close to) the polyomino of C . More precisely, letting A be the family of
simply connected compact sets of R2, we define the following.

Definition 1. Theminimum perimeter polygon of two polygons V ,U with V ⊂ U◦ ⊂ R2 is a subset P of R2 such that

P = argmin
A∈A,V⊆A,∂A⊂U\V◦

Per(A), (1)

where Per(A) stands for the perimeter of A, more precisely the 1-dimensional Hausdorff measure of the boundary of A.

Definition 2. Theminimum length polygon (MLP) of a digital contour C is the minimum perimeter polygon of L1(C), L2(C).
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3.2. Set-theoretic definition

The relative convex hull leads to a nice and simple set-theoretic definition of theMLP. This definition is very general since
it is related to sets in n-dimensional Euclidean spaces. It is a rather natural extension of convex hull. In the following, the
notation xy stands for the straight line segment joining x and y, i.e. their convex hull.

Definition 3 ([33]). Let U ⊆ Rn be an arbitrary set. A set C ⊆ U is said to be U-convex iff for every x, y ∈ C with xy ⊆ U it
holds that xy ⊆ C .

Let V ⊆ U ⊆ Rn be given. The intersection of all U-convex sets containing V will be termed convex hull of V relative to
U , or more shortly U-convex hull of V , and denoted by ConvU(V ).

We use this definition in the 2-dimensional case.

Definition 4. The set-theoretic MLP of a digital contour C is the convex hull of L1(C) relative to L2(C).

3.3. Equivalence; convex case

The two previous definitions (MLP and set-theoretic MLP) are equivalent due to the following theorem:

Theorem 5 (Theorem 3, [31,33]). Eq. (1) has a unique solution, which is

1. a polygonal Jordan curve whose convex vertices (resp. concave) belong to the vertices of the inner polygon (resp. the vertices
of the outer polygon),

2. the convex hull of V relative to U.

Since for a 4-connected convex digital set A, the convex hull of A does not contain any other integer points (e.g. see [4]),
it is clear that the convex hull of A is a L2(C)-convex set containing L1(C). It is also clear that it is included in any other
L2(C)-convex set containing L1(C). The convex hull of A is then the set-theoretic MLP of A, and is therefore its MLP according
to the previous theorem.

We also mention that the perimeter of the MLP is a good discrete perimeter estimator [34]. This is proved with standard
results related to convex geometry [29]. The precision of the estimation is no greater than 8h if the digitization step is h.
The MLP provides thus a multigrid convergent perimeter estimator with convergence speed O(h) for convex shapes or for
shapes with a finite number of inflexion points.

4. Arithmetic MLP

4.1. Decomposition into convex/concave/inflexion zones

Wehave the following theorem from [10], which relates convexity tomaximal segment directions. It also induces a linear
time algorithm to check convexity.

Theorem 6 (Adapted from [10]). A digital contour is digitally convex iff every couple of consecutive maximal segments of its
tangential cover is made of ∧-turns.

For a given DSSM , its first and last upper leaning points are respectively denoted by Uf (M) and Ul(M), while its first and
last lower leaning points are respectively denoted by Lf (M) and Ll(M). In the same paper, it is proven that the point Ul(Ml) is
no further than Uf (Ml+1) in the case of a convex contour. A symmetrical property holds naturally for lower leaning points in
the case of a concave contour. These two properties are necessary for the consistency of points (1) and (2) of Definition 7.We
note also that in any DSSM , the first upper leaning point Uf (M) is no further than the last lower leaning point Ll(M): this is
due to the fact that leaning points along a DSS alternate between upper and lower position. This is used for the consistency
of points (3) and (4) of Definition 7. Wemay now consider the succession of turns along a digital contour to cut it into parts.

Definition 7. A digital contour C is uniquely split by its tangential cover into a sequence of closed connected sets with a
single point overlap as follows:

1. A convex zone or (∧,∧)-zone is defined by an inextensible sequence of consecutive ∧-turns from (Ml1 ,Ml1+1) to
(Ml2−1,Ml2). If l1 ≠ l2, it starts at Ul(Ml1) and ends at Uf (Ml2), otherwise the digital contour is convex and constitutes a
single convex zone.
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2. A concave zone or (∨,∨)-zone is defined by an inextensible sequence of consecutive ∨-turns from (Ml′1
,Ml′1+1

) to
(Ml′2−1

,Ml′2
). It starts at Ll(Ml′1

) and ends at Lf (Ml′2
).

3. A convex inflexion zone or (∧,∨)-zone is defined by a∧-turn followed by a∨-turn aroundMi. It starts at Uf (Mi) and ends
at Ll(Mi).

4. A concave inflexion zone or (∨,∧)-zone is defined by a ∨-turn followed by a ∧-turn around Mi′ . It starts at Lf (Mi′) and
ends at Ul(Mi′).

Note that a convex or concave zone may be reduced to a single turn between two successive inflexions. In this case, the
zone may or may not be a single contour point (see Fig. 4).

4.2. Definition of the arithmetic MLP of C

The following lemma expresses the fact that a convex zone is naturally decomposed by the consecutive quadrants of its
maximal segments. We recall that a polyomino is h-convex when each of its rows is connected, v-convex when each of its
columns is connected and hv-convex when it is h-convex and v-convex.

Lemma 8. Any convex zone has a unique decomposition into a factor of (1Q0<10Q3<03Q2<32Q1<2)
∗, where Qa<b is written over

the two letters {a, b}, begins by b and ends by b.

Proof. A word that is not such a factor contains necessarily either some 30k1, 23k0, 12k3, 01k2 (trivial concavity), or some
02, 20, 13, 31 (back and forth), or some 103, 210, 321, 032 (one pixel wide quadrant change). The first case may not happen
in a clockwise contour of a hv-convex polyomino, and therefore it may not happen in a convex zone (discrete convexity
implies hv-convexity). The second case may not happen on the boundary of any polyomino. The third case may not happen
on a simple digital contour. �

The words Qa<b are called the quadrant words of the convex zone. A symmetric decomposition into a factor of
(0Q1<01Q2<12Q3<23Q0<3)

∗ holds for the concave zones.

Definition 9. Assume Ci,j is a connected part of a contour,with only two kinds of steps. The left envelope of Ci,j is the sequence
of edges of the convex hull of the inside pixels of Ci,j, such that the first vertex is the inside pixel of Ci, the last vertex is the
inside pixel of Cj and the edges turn clockwise around the hull. The right envelope of Ci,j is defined symmetrically by replacing
everywhere inside pixel by outside pixel and clockwise by counterclockwise.

We may now define a linear analog to a digital contour which is the arithmetic MLP. We refer the reader to Fig. 3 for an
illustration of this definition, see also Fig. 4 for a more detailed description of the construction of the AMLP around inflexion
zones.

Definition 10. The arithmetic MLP (or AMLP) of a digital contour C is the polygon AMLP(C) defined by zones Ci,j in C ,
according to its type:

Zone type of Ci,j Associated part of AMLP(C)

(∧,∧)-zone Union of the left envelope of each quadrant word of Ci,j

(∨,∨)-zone Union of the right envelope of each quadrant word of Ci,j

(∧,∨)-zone Segment joining the inside pixel of Ci to the outside pixel of Cj

(∨,∧)-zone Segment joining the outside pixel of Ci to the inside pixel of Cj

4.3. The arithmetic MLP is a polygon with boundary in the band L2(C) \ L1(C)◦

We shall prove in this section that the arithmetic MLP of a digital contour is a polygon which separates inner pixels from
outer pixels.

Lemma 11. AMLP(C) is a closed polygonal line with vertices in Z2.

Proof. We look first at a convex zone of C . According to Definition 10, the arithmetic MLP is constructed by parts for each
quadrantword. The definition of envelope (Definition 9) guarantees that each part is a polygonal line. The fact that one letter
is removed between two quadrant words ensures that the inside pixel of the last point of the first quadrant word is the same
as the inside pixel of the first point of the second quadrant word. Therefore, each part is correctly connected to the next one
and AMLP(C) is a polygonal line in a convex zone of C . The same argument holds for a concave zone. Lastly, AMLP(C) is by
Definition 10 a segment in an inflexion zone.

We have just proved that AMLP(C) is a polygonal line in each zone of C . Now, any two consecutive polygonal lines
share the same extremity. For instance, a proper (∧,∧)-zone of C , terminated at in(Uf (Ml)) may only be followed by a
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Fig. 3. Illustration of the construction of the AMLP from a digital contour. Left: the input digital contour is theword 1101011010010003303003003333233
2323223212211010101112122232333321212. The maximal segments define two (∧,∧)-zones (in blue), two (∨,∨)-zones (in green), two (∧,∨)-zones
(in red) and two (∨,∧)-zones (in magenta). Center: Each convex zone is decomposed into quadrant words. For instance, the leftmost convex zone is
decomposed as 21212 · 1 · 10101101001 · 0 · 00, where the isolated letters 1 and 0 correspond to quadrant changes. Right: the AMLP is computed by zones
either by convex hull computation in convex or concave zones, or just by connecting endpoints in inflexion zones. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Examples of AMLP: Left. the left envelope of a (∧,∧)-zone, the right envelope of a (∨,∨)-zone both joined by the segment associated to the (∧,∨)

convex inflexion zone. Center. A (∨,∨)-zone is reduced to a single point bordered by two inflexion zones. Right. An example of AMLP with inside (resp.
outside) pixels of each quadrant word.

(∧,∨)-zone, beginning also at in(Uf (Ml)). The digital contour point is clearly the same for both, and so is its inside pixel.
Indeed, since Uf (Ml) is the first upper leaning point of a maximal segment, the next maximal segmentMl+1 cannot contain
it. Therefore it is Ml that defines the quadrant vector for this point and thus the position of the inside pixel. Other cases are
treated identically. AMLP(C) is thus a closed polygonal line whose vertices are by construction in Z2. �

We recall that the set C ⊕ Sq is also the one pixel wide band L2(C) \ L1(C)◦.

Lemma 12. In a (∧,∧)-zone Ci,j of C, the corresponding edges of AMLP(C) form a simple polygonal line included in L2(C)◦ \
L1(C)◦, and in Ci,j ⊕ Sq.

Proof. The word Ci,j is composed of quadrant words (Lemma 8). Let Qa<b be one of them.Without loss of generality, assume
a = 0 and b = 1. We claim that its left envelope E0<1 is in Q0<1 ⊕ Sq.

We further denote by −→v the quadrant vector of a word in {0, 1}∗. Since Ci,j is a convex zone, the sequence of maximal
segments of Q0<1 has only ∧-turns. Theorem 8.1 in [10] shows this contour is digitally convex, and there is then no integer
point between the upper convex hull of Q0<1 and Q0<1 itself. Now the inside pixels in(Q0<1) of Q0<1 constitutes the same
contour as Q0<1 but for a translation by−

−→v
2 . Furthermore, the left envelope E0<1 is also the translation by−

−→v
2 of the upper

convex hull of Q0<1. Hence there is no integer point between E0<1 and in(Q0<1).
We denote by P the polygon formed by the union of the two polygonal curves E0<1 and in(Q0<1). Its interior does not

contain any point of Z2. The only integer points that are touched by P are in I(C). First, P has an empty intersection with
L1(C)◦. Indeed, assume there is some x ∈ P ∩ L1(C)◦, then xwould belong to an open unit square delimited by four adjacent
integer points of L1(C). This is not possible since the points of L1(C) that may touch P form an oriented path in the quadrant
0 < 1. A square would require a step in another direction than 0 or 1.

Furthermore, the boundary of P does not cross any unit segment between two adjacent points of Z2
\ I(C) (otherwise we

could build a smaller convex set which does not cross it). Since the vertices of L2(C) belong to this set of points, we conclude
that P cannot intersect ∂L2(C). Jordan’s theorem applied to ∂L2(C) induces that P ⊂ L2(C)◦.

We have thus that E0<1 ⊂ P ⊂ L2(C)◦ \ L1(C)◦. It thus shows E0<1 ⊂ C ⊕ Sq. All points defining the hull are included in
Q0<1⊕ Sq. Only an edge of P may go outside Ci,j⊕ Sq. We already know that such edges may not cross ∂L2(C) or ∂L1(C). The
only ways out are the two unit segments (Ci−1⊕ Sq)∩ (Ci⊕ Sq) and (Cj⊕ Sq)∩ (Cj+1⊕ Sq). It is clear that would an edge of
P go outside through these segments, then it exit through one before entering through the other. So P does a loop around
L1(C) within C ⊕ Sq, and has slopes in all quadrants. This is impossible since by construction all edges of P starting from the
bottom left point are on both sides with slopes in the first quadrant (along E0<1 on one side and in(Q0<1) on the other side).
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Fig. 5. Geometry of a DSS of slope 2
3 along a digital contour. The digital contour is drawn in between the corresponding inside and outside pixels. They

clearly draw the same contour up to a translation. Upper and lower leaning points are denoted by gray right triangles. The thick red line connects the
first upper leaning point on the inside contour to the last lower leaning point on the outside contour. The two straight lines define a straight band which
separates inside from outside pixels. The thick red line is in this band, thus in L2(C) \ L1(C)◦ . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Gathering every left envelope of Ci,j we get a polygonal line from in(Ci) to in(Cj), which is included in Ci,j ⊕ Sq. This
polygonal line is simple since it is simple in each part and since each connection made at quadrant change is a proper
vertex. �

The following lemma is proven similarly to the previous one.

Lemma 13. In a (∨,∨)-zone Ci′,j′ of C, the corresponding edges of AMLP(C) form a simple polygonal line included in L2(C) \
L1(C), and in Ci′,j′ ⊕ Sq.

Lemma 14. In a (∧,∨) or (∨,∧)-zone Ci′′,j′′ of C, the corresponding edges of AMLP(C) form a single straight segment included
in L2(C) \ L1(C)◦, and in Ci′′,j′′ ⊕ Sq.

Proof. We refer the reader to Fig. 5. The AMLP(C) is in this zone the thick red segment squeezed in the band that separates
inside from outside pixels. It is indeed easy to see that, if (a, b, µ) are the characteristics of the maximal segment associated
with the inflexion zone, the thick red segment is between the straight lines ax− by = µ+ a+b

2 and ax− by = µ+ a+b
2 − 1.

The remainders differing by one, the interior of this band does not contain any integer point. The lemma follows. �

Theorem 15. AMLP(C) is a simple polygon with boundary in L2(C) \ L1(C)◦.

Proof. Weknow already that AMLP(C) is a closed polygonal line (Lemma 11). Lemmata 12–14 guarantee that the restriction
of the edges of AMLP(C) in each type of zone is always a single polygonal line in L2(C) \ L1(C)◦. Taking any two zones on
C , say Cl1,l2 and Cl′1,l

′
2
, these contours may share a point if and only if they are consecutive (l2 = l′1 or l1 = l′2). Furthermore,

since C ⊕ Sq is an annulus with two simple polygonal boundaries, the sets Cl1,l2 ⊕ Sq and Cl′1,l
′
2
⊕ Sqmay have a non-empty

intersection if and only if l2 ≤ l′1 ≤ l2 + 2 or l1 − 2 ≤ l′2 ≤ l1. We remark that an inflexion zone contains at least two points
and, if it contains only two, it is surrounded by concave or convex zones, each of which with at least three points. A convex
or concave zone may be reduced to one point but is then surrounded by inflexion zones each of which with at least three
points. There is thus at most one intermediate zone between two zones with a non-empty intersection.

If there is none, then one of them is an inflexion zone and the other is a convex or a concave zone. At a convex junction
Ck,AMLP(C) ∩ (Ck ⊕ Sq) is reduced to the point in(Ck), therefore with no other self-intersections. A symmetric result is
obtained at a concave junction.

If there is one, this intermediate zone is composed of one, two or three points (0, 1, 2 linels). In all cases, AMLP(C) in this
zone is either reduced to a point or to a straight segment. In the former case, the two parts of AMLP(C) coming from the two
surrounding zones touch at this point and there is no other self-intersection. In the latter case, the straight segment in the
intermediate zone joins the last point of the previous zone to the first point of the next zone and has therefore an otherwise
empty intersection with both of them. �

We mention a property of a ∧-turn (a symmetric one exists for ∨-turn). We already know that the slopes of the two
maximal segments of a ∧-turn are decreasing but we need to be more precise to determine the slope of the AMLP(C) in an
inflexion zone.

Lemma 16. Let Mi and Mi+1 be two consecutive maximal segments forming a ∧-turn, and −→ci and −→ci+1 their quadrant vectors.
Setting A = Lf (Mi)+

−→ci and A′ = Ll(Mi+1)+
−→ci+1. Let θ be the direction of the DSS Mi ∩Mi+1, α be the direction of the vector

−−−−→
AUl(Mi), α

′ be the direction of the vector
−−−−−−→
Uf (Mi+1)A′. Then

θi > α ≥ θ ≥ α′ > θi+1. (2)
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Fig. 6. Illustration of the proof of Lemma 20.

Proof. Let us assume we are in the first quadrant and let us identify the DSSMi ∩Mi+1 with its part Ck,l on the contour. It is
the common part of two consecutive maximal segments, then both Ck−1 and Cl+1 are weak lower leaning points. The slope
of Ck−1,l, and thus the slope of Mi, are right descendants of the slope of Ck,l in the Stern–Brocot tree of fractions. Since A is
a weak upper leaning point of Mi, the slope of the straight line from A to the last upper leaning point of Mi is either a left
descendant of the slope of Ck−1,l (and is then greater than the slope of its ancestor Ck,l) or exactly the ancestor of the slope
Ck−1,l (and is then equal to the slope Ck,l). We have just proved θi > α ≥ θ . The right part is proven similarly. �

Corollary 17. Let θ be the direction of the edge e of ∂AMLP(C) in a (∧,∨)-inflexion zone. Let θ ′ and θ ′′ be the respective
directions of the edges of ∂AMLP(C) just before and just after e. Then θ ′ ≥ θ and θ ≤ θ ′′.

Proof. Let Mi the maximal segment carrying the (∧,∨)-inflexion zone. Applying Lemma 16 to the ∧-turn (Mi−1,Mi) gives
θ ′ ≥ θ (worst case isMi−1 is a (∨,∧)-zone andwemust keepα forMi−1 andα′ forMi). Applying the symmetric of Lemma 16
for a ∨-turn gives the other part. �

Corollary 18. Convex vertices of AMLP(C) are inside pixels of C (i.e. ∈ ∂L1(C)), concave vertices of AMLP(C) are outside pixels
of C (i.e. ∈ ∂L2(C)).

Proof. We already know that in a convex zone of C , vertices of AMLP(C) are by Definition 10 inside pixels with strictly
decreasing edge directions. In a concave zone of C , vertices of AMLP(C) are outside pixels with strictly increasing edge
directions. Around an inflexion zone of direction θi, θi−1 > θi impose a (∧,∨)-zone by Corollary 17, which means that the
vertex is the inside pixel of an upper leaning point. The reasoning is similar when θi−1 < θi. �

4.4. AMLP(C) is the MLP of C

We can now prove that the polygon AMLP(C) is the minimum perimeter polygon of L1(C), L2(C), or the so-called
minimum length polygon of C in the terminology of Klette et al. We recalled in Theorem 5 the equivalence of minimum
perimeter polygon with relative convex hull. We will therefore prove the following.

Theorem 19. If C is a simple 4-connected digital contour, thenAMLP(C) is the convex hull of L1(C) relative to L2(C) or, otherwise
said, AMLP(C) is the intersection of every L2(C)-convex set containing L1(C).

Proof. We proceed in four steps (the two first ones are proven afterward):

1. AMLP(C) is a L2(C)-convex set containing L1(C) (Lemma 20).
2. Every convex and every concave vertex of AMLP(C) belongs to every L2(C)-convex set containing L1(C) (Lemma 21).
3. Every edge of AMLP(C) belongs to every L2(C)-convex set containing L1(C). Indeed, let U be such a L2(C)-convex set and

let PQ be some edge of AMLP(C). Now, P and Q belongs to U (from step (2)). As PQ ⊂ L2(C), by definition of relative
convexity, PQ ⊂ U , which concludes.

4. Points (2) and (3) implies ∂AMLP(C) is included in every L2(C)-convex set containing L1(C), which proves that ∂AMLP(C)
is included in the intersection of every L2(C)-convex set containing L1(C). Let x be some point in AMLP(C)◦. Taking any
straight line containing x, it intersects ∂AMLP(C) at least two points by Jordan’s theorem. Picking the points closest to x
on each side, say P and Q , the same reasoning as in step (3) concludes that the whole segment PQ and hence x belong to
every L2(C)-convex set containing L1(C). We have proven that AMLP(C) is included in the intersection of every L2(C)-
convex set containing L1(C). Being itself such a relative convex set (point (1)), it is necessarily the convex hull of L1(C)
relative to L2(C). �

We detail now the properties related to steps (1) and (2).

Lemma 20. AMLP(C) is a L2(C)-convex set containing L1(C).

Proof. Fig. 6 illustrates this proof. It is clear from Theorem 15 that AMLP(C) ⊂ L2(C). Furthermore, ∂AMLP(C) is a
deformation of C in the annulus C ⊕ Sq, bounded on the inside by L1(C), and therefore AMLP(C) ⊃ L1(C).
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In order to show that AMLP(C) is a L2(C)-convex, it remains to show that for every x, y ∈ AMLP(C) with xy ⊆ L2(C) it
holds that xy ⊆ AMLP(C). Taking the contrapositive of preceding statement, let x, y ∈ AMLP(C) such that xy ⊈ AMLP(C), we
shall prove that xy ⊈ L2(C). Let x′ be the element of xy ∩ ∂AMLP(C) closest to x (existence guaranteed by Jordan theorem).
The open ray (x′y) has a connected part (x′y′) outside AMLP(C). The sequence S of unit squares in the half-integer plane
intersected by (x′y′) is itself a digital straight segment, whose first square is Ci ⊕ Sq with Ci some point of C . Since (x′y′) is
not in AMLP(C), it is even less in L1(C)◦. Thus the squares of S are outside L1(C)◦.

If the ray (x′y′) goes outside L2(C), then we have found a point of xy that is not in L2(C), which concludes the argument.
Otherwise we shall reach a contradiction. Indeed the ray has a cover of consecutive unit squares in L2(C)\L1(C)◦. Otherwise
said, there is a subpart Ci,j of the digital contour such that Ci,j ⊕ Sq covers (x′y′). Without loss of generality, we may assume
−→xy is in the first quadrant, with direction 0 ≤ p < π

2 . Then the direction of ∂AMLP(C) at x′ is smaller than p. It is also
necessary that the direction of ∂AMLP(C) at y′ is greater than p. It is thus compulsory to have at least one concave vertex
strictly between x′ and y′ along the boundary of AMLP(C). We denote by A the first concave point encounteredwhenmoving
from Ci to Cj. By Corollary 18, the point A is the outside pixel of some Ck and belongs to L2(C). Remark also that the square
Ci ⊕ Sq has at least one side joining a point B on L1(C) to a point B′ on L2(C) that does not intersect (x′y′). The point z at the
intersection of BB′ and ∂AMLP(C) is not between x′ and y′.

The curve starting from z to B′ thenmoving along ∂L2(C) until point A then going back along ∂AMLP(C) until z is a Jordan
curve. Since (x′y′) goes outside AMLP(C), there is a point x′′ ∈ (x′y′)∩L2(C)which is inside this curve. But point y′ is outside
this curve. The segment x′′y′ thus crosses it at some point. It cannot be between z to B′ nor between A and z otherwise y
would be in-between. It cannot also be along ∂L2(C) but not at A otherwise then it goes outside L2(C) (case treated above).
If the ray exits exactly at A then the direction p is smaller than the direction θ of ∂AMLP(C) just before A. But the sequence
of directions from x′ to A is strictly decreasing (A is the first concave point). And the direction of (x′y) is strictly greater than
the direction of ∂AMLP(C) at x′. We have just build some sequence p > α1 > · · · > θ > p. This is a contradiction. �

Lemma 21. Every convex and every concave vertex of AMLP(C) belongs to every L2(C)-convex set containing L1(C).

Proof. Let U be a L2(C)-convex set containing L1(C). Let A be some convex vertex of AMLP(C), and let us prove it belongs to
U . By Corollary 18, the point A is the inside pixel of some Ck and belongs to ∂L1(C). Thus A ∈ L1(C) ⊂ U .

Let A′ be some concave vertex of AMLP(C). We shall prove that A′ ∈ U . Let B1 be the first convex vertex of AMLP(C)
before A′ and B2 be the first convex vertex of AMLP(C) after A′. Let C be the curve going from B1 to B2 following ∂AMLP(C)
(so that A′ ∈ C) and going back to B1 following ∂L1(C). Lemma 13 ensures that C is a Jordan curve since a concave part of
AMLP(C) does not intersect L1(C).

Let D be the angle bisector of the two edges of AMLP(C) joining in A′. Let the line D′ be the perpendicular to D that
intersects it at A′. Since A′ is a concave vertex relatively to AMLP(C), it is also concave relatively to C and so, by Jordan’s
Theorem, there exist two closest points x, y distinct from A′ on this Jordan curve such that A′ ∈ xy. These two points x and y
must be on ∂L1(C) because the whole part of C going from B1 to B2 along AMLP(C) is concave.

Thus, belonging to L1(C), points x and y belongs to U . Since xy ⊂ L2(C), relative convexity implies xy ⊂ U , which in turns
implies A′ ∈ U . �

4.5. The arithmetic MLP can be computed in linear time

We finish by providing an algorithm to compute AMLP(C).

Algorithm 1: Computation of AMLP(C). On line 1 the tangential cover of C is computed using [21] (see boxes on Figure
3, left). On line 2 the (α, β)-zones are computed following Definition 7 (see colors on Figure 3, center). On line 7 the
left or right envelope can be computed with for instance Melkman’s algorithm [24] (see Figure 3, right).
Input: C: A digital contour
Output: S: A sequence of points, that is the MLP of C

1 Compute (Mi)i=0..m−1 the tangential cover of C;
2 Decompose (Mi)i=0..m−1 in (α, β)-zones (Zj)j=1..z ; // where α, β ∈ {∧,∨}
3 S = ();
4 for j = 1 to z do
5 if Zj is a (∧,∧) or (∨,∨)-zone then
6 for each quadrant word Qi of Zj do
7 add to the back of S the left (if (∧,∧)-zone) or right (if (∨,∨)-zone) envelope of Qi ;

else
8 add to the back of S the segment defined in Definition 10.

9 return S

Theorem 22. Algorithm 1 computes AMLP(C) in time linear with respect to the length of C.
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Proof. Let n be the number of points of C . Computation of the tangential cover on line 1 is performed in linear time according
to [12] or [21]. The computation on line 2 is clearly proportional tomwhich is alsoO(n). Finally, on line 7, there are two cases
to consider. Given a convex or concave zone, the AMLP(C) is some convex hull of a simple polygonal line which is computed
in time proportional to the length of the zone using [24] or [4]. Given an inflexion zone, the computation is reduced to a
segment, thus a O(1) operation. Total computation time is O(n). �

5. Combinatorial definition of the minimum length polygon

Based on the combinatorial characterization of digital convexity obtained in [4], we propose a new algorithmic definition
of the minimum length polygon. We begin this section by recalling some standard definitions and useful properties of word
combinatorics.

Given an arbitrary ordered alphabet A = {a1, a2, . . . , an} with the order a1 < a2 < · · · < an, written A = {a1 <
a2 < · · · < an} for short, we extend this order to words over A using the lexicographic order. We note |w|a the number of
occurrences of the letter a in w and |w| =

∑
a∈A |w|a is the length of w. Let An be the set of all words of length n over A,

in particular A0
= {ε} where ε is called the empty word. A word w is non-empty if w ≠ ε and we note A∗ = ∪n≥0 An and

A+ = A∗\{ε}. The i-th letter of awordw isw[i] andwe refer to factors ofw like this:w = w[1 : i−1]w[i : i+j]w[i+j+1 : n],
where w[1 : i− 1] is a prefix of w, w[i+ j+ 1 : n] is a suffix of w and all three are factors of w. We denote by Pref(w) the
set of all prefixes of w and Pref+(w) the set of all proper prefixes of w that is the set Pref+(w) = Pref(w) \ {w}. Note for
any word w, ε ∈ Pref(w).

By reference to the Freeman coding, given a word w ∈ {0, 1, 2, 3}n the translation vector associated to w is −→w =

(|w|0 − |w|2, |w|1 − |w|3).

5.1. Lyndon words

Definition 23. A non-empty word w over the ordered alphabet A is a Lyndon word if w < v for any non-empty suffix v of
w. LA is the set of all Lyndon words over A.

Note that when the alphabet is unambiguous, we might simply write L.

Theorem 24 ([22] Theorem 5.1.1). Any non-empty word w over A admits a unique factorization (called Lyndon factorization)
as a sequence of decreasing Lyndon words: w = ln11 ln22 · · · l

nk
k with l1 > l2 > · · · > lk where ni ≥ 1 and li ∈ LA for all 1 ≤ i ≤ k.

Wedefine the function FLF, called first Lyndon factor, as FLF(w, A) = (l1, n1)wherew = ln11 ln22 · · · l
nk
k is its unique Lyndon

factorization according to the ordered alphabetA. For practical reasons, given awordw ∈ A+ such that FLF(w, A) = (u, k),
we define the auxiliary functions FLFone(w, A) = u and FLFall(w, A) = uk. If the alphabet is implicit, we may simply write
FLF(w). Finally, we recall the following basic property of Lyndon words.

Property 25 ([22], Proposition 5.1.3). Given u, v ∈ LA, if u < v then uv ∈ LA so the inequality u < uv < v holds.

5.2. Christoffel words

Introduced by Christoffel in [5], Christoffel words where reinvestigated by Borel and Laubie in [3]. Since then their
impressive combinatorial structure has been studied by many, see [2] for a comprehensive self-contained survey. Here is
one of the many equivalent definitions of Christoffel words.1

Definition 26. A Christoffel word on the alphabet {a < b} is the Freeman code of the path joining two consecutive upper
leaning points of a DSS with positive slope according to the convention that the letter a codes an horizontal step and the
letter b codes a vertical one.

A Christoffel word is said to be trivial if it has length 1 and we note Ca<b the set of all Christoffel words over the ordered
alphabet {a < b}, while the set of non-trivial Christoffel words is denoted C′a<b. Again, when the alphabet is unambiguous
we simply write C.

Referring to the Freeman code, the slope of w is defined as ρ(w) = |w|b/|w|a with the convention that 1/0 = ∞.
In the case of Christoffel words, unlike the general case, the lexicographic order matches the natural order on the slopes:
u, v ∈ Ca<b implies (u < v ⇐⇒ ρ(u) < ρ(v)).

A convex polyomino being composed of only one convex zone, Lemma8provides a natural decomposition of its boundary
in four quadrant words. Our combinatorial view of convexity is based on the following result which characterizes convex
quadrant words.

1 These words are sometimes referred as primitive lower Christoffelwords.
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Theorem 27 ([4]).Ahv-convex polyomino P is convex if and only if the factorization as decreasing Lyndonwords of each quadrant
words Qa<b = ln11 ln22 · · · l

nk
k is such that li ∈ Ca<b for all 1 ≤ i ≤ nk. Moreover, in the case where P is convex, for each quadrant,

the edges of its convex hull coincide with the vectors ni
−→
li .

In other terms, we have convexity when Lyndon factors are Christoffel words. This leads us to define the variant First
Lyndon Christoffel Word FLCF of the FLF function as follows. Let w be a word over A = {a1 < a2 < a3 < a4}, such that
w[1] = a2 and FLF(w, A) = (u, k), then

FLCF(w, A) =


(u, k, true) if u is in Ca2<a3 ,
(ε, 0, false) otherwise.

5.3. Definition of the CMLP

We define the combinatorial minimum length polygon algorithmically using Algorithm 3 which simply computes
vertices given by a list of edges given by Algorithm 2 which is base on the function FLCF. We suppose that the word w
codes the boundary of a polyomino P starting from the point (x0, y0) which is the lowest point among the leftmost points
of P (i.e. x0 = min{x|(x, y) ∈ P} and y0 = min{y|(x0, y) ∈ P}).

Algorithm 2: nextEdge

Input: (u, A) such that u ∈ A+ and A = {a1 < a2 < a3 < a4}.
Output: (x, l, A) with x ∈ Z2, l ∈ N.

1 (v, k, inC)← FLCF(u, A); // Try to extract next Christoffel edge.
2 x = kv⃗; l = k|v|;
3 if v = a2 then

// Quadrant change.
4 A← {a4 < a1 < a2 < a3};
5 x← x− v⃗;
6 else if not inC then

// Inflexion detected.
7 t ← u[0];
8 u[0] ← a3;
9 A← {a4 < a3 < a2 < a1};

10 (x, l, A)← nextEdge(u, A);
11 u[0] ← t;
12 return (x, l, A)

Algorithm 3: Computation of vertices from Algorithm 2.

Input: w ∈ {0, 1, 2, 3}N the boundary word of P .
Output: (x0, x1, x2, . . . ) a list of vertices that form the CMLP of P .

1 x← (0, 0); i← 0; A← {0 < 1 < 2 < 3};
2 w← w · 10; N ← N + 2 ;
3 while w ≠ ε do
4 (v, l, A) = nextEdge(w, A);
5 xi+1 ← xi + v ;
6 i← i+ 1 ;
7 w← w[l+ 1 : N] ;
8 N ← N − l ;
9 return (x0, x1, x2, . . . , xi)

In order to illustrate how Algorithm 2 works, we discuss the geometrical interpretation of the modifications performed
to the alphabet A in Algorithm 2. First, notice that the alphabet is initialized by A = {0 < 1 < 2 < 3} as we know that
the leftmost part of the shape is convex (of the form 21 · · · 10), the contour going clockwise around the shape. All through
the algorithm, it shall always be the case that when analyzing a convex quadrant word Qa2<a3 the alphabet A is set to
{a1 < a2 < a3 < a4} so that the word a2a1 codes a quadrant change while a3a4 codes a change of convexity type.

A bijective map µ : A → A over the letters A extends naturally to any word w ∈ An as µ(w) = µ(w[1])
µ(w[2]) · · ·µ(w[n]). Using the notation µ(A) = {µ(a1) < µ(a2) < · · · }, clearly µ(w) ∈ LA ⇐⇒ w ∈ Lµ−1(A)



2240 J.-O. Lachaud, X. Provençal / Discrete Applied Mathematics 159 (2011) 2229–2250

Fig. 7. Left. A path coded by w = 1000101033322222. Center. r−1(w) = 2111212100033333 and Right. w = 0111010122233333.

Fig. 8. Illustration of Algorithm 2. Left. Starting from the step ≫, the path coded by w = 001001001011 · · · is such that FLCF(w, {3 < 0 < 1 <

2}) = (ε, 0, false). Right. Starting from the step ≫, the path coded by w = 110110110100 · · · , and starting from the step ≫, the path coded by
f (w) = 010110110100 · · · is such that FLCF(f (w), {3 < 0 < 1 < 2}) = (01011011, 1, true). The thick red line shows the MLP’s edge obtained from
01011011. This edge defines an inflexion zone, more precisely a (∧,∨)-zone. Working with f (w) allows to consider both extremities of the inflexion zone
as inside pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and µ(w) ∈ Ca<b ⇐⇒ w ∈ Cµ−1(a)<µ−1(b). Algorithm 2 uses this fact so that instead of applying transformations to
the whole word w, only the order relation over the four letter alphabet is changed. Let w be the contour word of C over
A = {3 < 0 < 1 < 2} and define r : A→ A as r(3) = 2, r(0) = 3, r(1) = 0 and r(2) = 1. One verifies that the contour
coded by r−1(w) corresponds to a rotation by π/2 (see Fig. 7). This explains line 4 of Algorithm 2 which is called when a
quadrant change occurs.

Similarly, let A = {a1 < a2 < a3 < a4} and define the bar operator ( ) as a1 = a4, a2 = a3, a3 = a2 and a4 = a1.
Consider a quadrant word Qa<b, one verifies that Qa<b corresponds to a reflexion by the line y = x if {a, b} ∈ {{0, 3}, {2, 1}}
or by the line y = −x if {a, b} ∈ {{1, 0}, {3, 2}}. Once again, see Fig. 7 for an example. Roughly speaking, this transformation
turns this part of the contour inside out, so that computing the left envelope of Qa<b is equivalent to the computation of the
right envelope of Qa<b. This explains line 9 of Algorithm 2.

The modification of the first letter of w at line 8 is due to the fact that w code the inter-pixel path. Since the condition at
line 6 detects a change in the convexity type, the inner pixel adjacent to the step coded be w[1] must now be consider as
an outside pixel (see Fig. 8). This is done by switching the value of the first letter of w from a2 to a3. An equivalent point of
view is given by the following involution on words. Let w = au be a non-empty word with a ∈ A and u ∈ A∗, we define
the function f by

f (au) = au. (3)

Definition 28. The combinatorial MLP of a digital contour C , noted CMLP(C), is obtained by joining consecutive vertices
given as output of Algorithm 3.

We suppose that the lowest pixel among the leftmost pixels of the polyomino P is centered at (0, 0). This ensures that
point v0 = (0, 0) is a vertex of CMLP(C). Moreover, in order to close the polygonal path computed, the word 10 is added
at the end of w so that an extra vertex located at (0, 0) is added at the end of the list closing the polygonal line (line 2 in
Algorithm 3).

5.4. The CMLP is the same as the AMLP

The main result in order to show that CMLP and AMLP are both the same polygon is given by Theorem 27. Indeed, it
implies that for a given convex quadrant word, Algorithm 3 computes its convex hull. Now we need to show that these
parts are all connected with each other correctly.
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Lemma 29. Let M = Ci,j be a (∧,∨)-MDSS corresponding to an inflexion zone of C, and let the word w ∈ A∗ be the Freeman

code of C starting from Uf (M). The couple (c, k) = FLF(f (w), A) is such that
−→
c = out(Ll(M))− in(Uf (M)).

Proof. Let M be a (∧,∨)-MDSS. Moreover, without lost of generality, consider the case where the quadrant vector is
(−1/2, 1/2) and A = {3 < 0 < 1 < 2}.

Starting from the DSS M , we use the algorithmic techniques from [21] in order to remove points at the beginning of the
DSS one by one until Uf (M) is removed. After that, we use technique from [7] in order to add the point A = Uf (M)+(1,−1).
Let k be such that Ck = Uf (M) consider the DSS M ′ = {A} ∪ Ck+1,j.

The proof ismade in two parts. Firstwe show that A = Lf (M ′) and that Ll(M) is the second lower leaning point ofM ′. Then

we show that the word c = FLFone(f (w)) is defined by those two leaning points and satisfies
−→
c = out(Ll(M))− in(Uf (M)).

For the first part, there are two cases to consider, depending if Ck+1,j has same slope as M or not.
(a) If Ck+1,j has same slope as M , then Uf (M) does not change the slope of Ck+1,j when added, and it is an upper leaning

point. Then point A, being its translation by (1,−1) is necessarily a lower weakly exterior point to the digital straight
line supporting Ck+1,j. Therefore M ′ = {A} ∪ Ck+1,j has a greater slope than Ck+1,j. Algorithm [7] tells that A is its first
lower leaning point (A = Lf (M ′)) while the last lower leaning point remains unchanged (Ll(M) = Ll(Ck,j) = Ll(M ′)). We
can conclude since there are only two leaning points.

(b) If the slopes of Ck+1,j and M are different, then Uf (M) is an upper weakly exterior point to Ck+1,j. Then point A, being
its translation by (1,−1) is necessarily a lower leaning point to the digital straight line supporting Ck+1,j, and we have
A = Lf (M ′). Let B be the second lower leaning point ofM ′, then B is the first lower leaning point of Ck+1,j. Algorithm [7]
tells that Ck,j has B as its last lower leaning point. SinceM and Ck,j have the same last lower leaning points, we conclude
Ll(M) = B.
Let R be the reflexion of M ′ by the line y = x. Of course, R is a DSS whose upper leaning points are the lower leaning

points of M ′. Call U the image of A in R and U ′ the image of Ll(M). From what precedes, it is clear that UU ′ is a Christoffel
word, that we denote by c. By construction, we have

−→
c = Ll(M)− (Uf (M)+ (1,−1)) = out(Ll(M))− in(Uf (M)).

Let v be the Freeman code of the DSS R. As R starts on an upper leaning point, there exists some positive integer k and
word p proper prefix of c such that v = ckp. Since the DSS M is not extensible to the right, the following letter in w is
either a3 or a4. In the reflexion f (w), this letter, say a, is either a2 or a1. Using Lemma 39 (see the Appendix), with u = c , we
conclude that FLFone(f (w)) = c. �

The next lemma has a symmetric proof.

Lemma 30. Let M = Ci,j be a (∨,∧)-MDSS (resp. (∨,∧)-MDSS) corresponding to an inflexion zone of C, and let the word w ∈

A∗ be the Freeman code of C starting from Lf (M). The couple (c, k) = FLF(f (w), A) is such that
−→
c = in(Ul(M))−out(Lf (M)).

Theorem 31. AMLP(C) and CMLP(C) are the same polygon.
Proof. First of all, Algorithm 3 starts at the lowest point among the leftmost points of the shape. It starts thus exactly at the
end of some word in Q1<2. The first letter is clearly 1 so the starting alphabet is consistent for FLCF. The vertical leftmost
edge is thus extracted and is followed by a quadrant change. After that, we are now in some quadrant word Q0<1 with the
alphabet {3 < 0 < 1 < 2} in a convex zone. Again, the first letter is 0 so the alphabet is consistent for FLCF.

By Theorem 27, on any convex part that stays in the same quadrant, the edges computed by Algorithm 2 are the same
as those of the convex hull, which is the left envelope of this part. Quadrant changes are managed by the condition at line 3
of Algorithm 2. In the case of a quadrant change, the alphabet is modified in order to correspond to the new quadrant, and
thus the following letter will be consistent for the next FLCF. Note that the extracted vector is shortened by 1 (line 5) since
the interpixel path is always one step longer than the boundary of L1(C) in this case.

On a concave part, the reversal of the alphabet at line 9 of Algorithm 2 reverses the perspective and allows to use exactly
the same algorithm to compute the convex hull of the outside pixels of C , which is the right envelope of this part. In such
case, the first letter is modified (line 8) so as to be consistent with the next FLCF.

Finally, Lemmas 29 and 30 ensure that the edges computed over the inflexion zones between convex and concave zones,
which are detected at line 6 of Algorithm 2, are the same as those of the AMLP(C). �

6. Implementation of FLCF and linear computational complexity of CMLP

In order to compute the function FLCF one may use Duval’s algorithm [11] which computes the pair (u, k) = FLF(w, A)
for any word w with a time complexity of O(k|u|). This optimal algorithm is attributed to [13] in [23]. In Algorithm 2 we
compute (u, k) = FLF(w, A) but, in the case where u ∉ C the specific output (u, k) does not matter. Based on this idea,
we propose a modified version of Duval’s algorithm. Algorithm 4 has the ability to determine dynamically if the word read
might lead to a Christoffel word and the computation immediately stops if not.

We first present the algorithm computing FLCF. Then, after recalling some helpful combinatorial properties of Christoffel
words,weprove the validity of this algorithmandwedetermine the computational complexity of thewholeCMLP algorithm.
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6.1. The modified Duval’s algorithm

Starting from Duval’s algorithm, we add a few lines in order to stop the computation on the case where the word read is
not a Christoffel word. In Algorithm 4, by considering only the lines tagged by (D), one gets the well known Duval algorithm
which computes the FLF function in a time linear in the length of its output (see [23], algorithm LyndonFactorization).
The extra variables p and q are related to properties of Christoffelwords andwill be further explained in the next subsections.

By updating these two variables p and q when needed, this new algorithm computes the function FLF exactly as Duval’s
algorithm if the output is a Christoffel word. Otherwise, it stops at line (∗). The test performed to reach line (∗) is directly
based on the upcoming Corollary 34. Fig. 9 illustrates this algorithm on a simple example.

In addition to this, we also added some optional lines tagged by (CF). In the case where FLFone(w, A) = c ∈ CA, the
list [u0; u1, . . . , ud] is the continued fraction of the slope of c. Note that this extra information is not required in Algorithm
2: this is why we do not output it in the context of CMLP computation. One may easily check that this does not affect the
overall time complexity of the algorithm.

Algorithm 4: Duval++
Input: (w, {a1 < a2 < a3 < a4}) where w ∈ {a2} · {a1, a2, a3, a4}N−1.
Output: (u, k, b) where b is a boolean such that b ⇐⇒ (u, k) = FLF(w, A).

(D) i← 1; j← 2;
p← 1; q← 2;

(CF) m← 0; d← 0; ud ← 0;
(D) while j ≤ N and w[i] ≤ w[j] do
(D) if w[i] = w[j] then

if j = q then
q← q+ p;

(CF) m← m+ 1;
(D) i← i+ 1;
(D) else

if j ≠ q or w[j] ≠ a3 then
(∗) return (ε, 0, false);
(D) else
(D) i← 1;

q← 2q− p ;
p← j;

(CF) if m = 0 then
(CF) ud ← ud + 1;
(CF) else
(CF) d← d+ 1; ud ← m;
(CF) d← d+ 1; ud ← 1;
(CF) m← 0

(D) j← j+ 1;

(D) return

w[1 : j− i], ⌊ j−1j−i ⌋, true


;

6.2. More about Christoffel words

Introduced by Borel and Laubie [3], the standard factorization of Christoffel words is the word combinatorics equivalent
of the well known splitting formula of DSS (see [35]).

Property 32 ([3]). For all w ∈ C′a<b, there exist a unique pair x, y ∈ Ca<b such that w = xy. This is called the
standard factorization w, it is denoted by w = (x, y).

Note that in such case, the inequality x < w < y holds. As mentioned previously, Christoffel words may be defined in
many ways. Here is another characterization describing their internal structure. First, let us define the functions G and D as
follows:

G,D : C′ −→ C′

G(u, v) = (u, uv),

D(u, v) = (uv, v).
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a b c

d e

Fig. 9. Illustration of Algorithm 4 on input word 00100101000. At initialization (a): i = 1, j = 2, vector −→p illustrates the Christoffel word w[1 : p] and
vector −→q illustrates the next Christoffel word to be obtained if the slope increases. At the beginning of the third iteration (b): i = 1, j = 4, p = 3, q =
5,−→p = (2, 1) and −→q = (3, 2). A new Christoffel word 001 has been detected at the previous iteration and the algorithm will now test if it is repeated.
This is performed by comparing the letters of w starting from position j with the letters starting from position i = 1. Also, q has been set to 5 because,
according to Corollary 34, a Christoffel word that begins with 001 must have a prefix of the form (001)n01 with n ≥ 1 so that the shortest one is 00101
with length 5. At the fourth iteration, (c): i = 2, j = 5, p = 3, q = 5. Since j = q and w[i] = w[j], the word 00101 is not a prefix of w and the only way the
algorithm does not stop is if w starts with at least two copies of w[1 : p] = 001, q is updated consequently to 8 and the next Christoffel word expected is
now 00100101. At the seventh iteration (d): i = 5, j = 8, p = 3 and q = 8. This time, w[i] ≠ w[j] and j = q which means that the expected Christoffel
word 00100101 has been read, p and q are updated consequently to 8 and 13 respectively. Also, i is reset to 1 since the algorithm will now check if this
new Christoffel word is repeated. Finally, at the tenth iteration, (e): i = 3, j = 11, p = 8 and q = 13. This algorithm stops since w[i] > w[j]. The tuple
returned is simply the vector−→p with the number of repetitions, in this case 1, and true since this is locally convex.

Theorem 33 ([3,1]). Every non-trivial Christoffel word over the alphabet {a < b} admits a unique sequence H1,H2, . . . ,Hk ∈

{G,D} such that

w = H1 ◦ H2 ◦ · · · ◦ Hk(a, b).

Reciprocally, for every sequence H1,H2, . . . ,Hk ∈ {G,D}, the word w = H1 ◦ H2 ◦ · · · ◦ Hk(a, b) is a Christoffel word.

These functions (G for left and D for right) build a tree that is equivalent to the Stern–Brocot tree of irreducible fractions,
each fraction being the slope of the corresponding Christoffel word.

This theorem constrains the structure of the prefixes of a Christoffel word as follows.

Corollary 34. For any w = (u, v) ∈ C′a<b, let χw = {wz ∈ C′a<b | z ∈ {a, b}
+
}. One has that

X ∈ χw ⇒ ∃n ≥ 1, wnv ∈ Pref(X). (4)

Proof. Any Christoffelword havingw as a prefix is in the right subtree ofw, i.e. the right subtree of (u, v) (in the tree induced
by G and D). Any node of this subtree has a prefix of the form wnv, which concludes. �

Note that χa = C′a<b and χb = ∅.
We can now establish some combinatorial properties of Christoffel words which will be used later on to show the

correctness of Algorithm 4. Recall that a period p of a word w is a positive integer such that w[i] = w[i + p] for all
1 ≤ i ≤ |w| − p.

Property 35. Let w ∈ C′a<b, then there exist u, x, y such that w = aub = (x, y) with the following properties:

(a) aub ∈ Ca<b.
(b) u is a palindrome.
(c) y = y′b implies that y′a ∈ Pref(w).

Proof. (a) It is a direct consequence of [2, Theorem 6.3], where the result is attributed to [8].
(b) See for instance [2, Proposition 4.2].
(c) The case y′ = ε is trivial while otherwise, we have y = y′b = au′b and by (b) both words u and u′ are palindromes.

This means that u′ is prefix and suffix of u and so y′ ∈ Pref(au) ⊂ Pref(w). Finally, if y′a ∉ Pref(w) it means that
y′b = y ∈ Pref(w) and so y < w which contradicts Property 32. �
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Fig. 10. Illustration of the four conditions of Lemma 36 withm = 2 and α = 2.

6.3. Validity and computational complexity of algorithm Duval++

In this subsection, we show that algorithm Duval++ (Algorithm 4) computes FLCF and that its time complexity is linear
with the size of its output (Proposition 37). Before proving it, we list the formal interpretations of each variable involved in
this algorithm (Fig. 10):

j: the index of the new letter in the input word, which will be read during this iteration;
i: the index of the letter that is one period behind the letter at index j;
p: the period of w[1 : j− 1], it is also the greatest index smaller then j such that w[1 : p] is a Christoffel word;
q: the expected position of the next upper leaning point, it is also the smallest index greater or equal to j such that w[1 : q]

may be a Christoffel word.

The following lemma formalizes these ideas.

Lemma 36. In Algorithm 4, each time thewhile condition is tested, either the word w[1 : j− 1] is written only on one letter (a2
or a3), or the four following conditions hold:

(1) w[1 : p] = c ∈ C′a2<a3 ,
(2) w[1 : i− 1] = cα

· u where α ≥ 0, u ∈ Pref(c) and u ≠ c,
(3) w[1 : j− 1] = cα+1

· u,
(4) q = (m+ 1)|c| + |y| where c = (x, y),m ≥ 0 and m|c| + |y| ≤ j− 1 < (m+ 1)|c| + |y|.

Proof. First of all, one may easily check that starting from the value 2, the variable j is incremented exactly once at every
turn of the loop. Also, one verifies that if the letter w[j] is a1 or a4 then the algorithm immediately stops. We denote by n
the current index of the iteration, starting from 1. We use the convention that xn refers to the value of some variable x at
the beginning of iteration n. It is clear that jn = n+ 1.

We begin by treating the case where w[1 : n] is written only on one of the letters a2 or a3. The only non-trivial case is
w[1 : n] = an2 and w[n+ 1] = a3. In such case, after one iteration, we have the following situation:

jn+1 = n+ 2, w[1 : n+ 1] = an2a3, in+1 = 1, pn+1 = n+ 1, qn+1 = 2n− 1,

which satisfies the four conditions, with cn+1 = an2a3 = (a2, an−12 a3), u = ε, α = 0, m = 0.
We now proceed by induction on n. The case n = 1 induces a one-letter word w[1 : 1] and is proved by the preceding

argument. Assuming the preceding properties are satisfied for an arbitrary n > 1, we prove they hold also for n+ 1.
There are only three different branches in this loop. To prove the induction, we analyze the three scenarios that might

occur at the n-th iteration.

1. w[in] = w[jn] and jn < qn (within a periodic pattern, slope is unchanged).
In this case we have

in+1 = in + 1, jn+1 = jn + 1, pn+1 = pn, qn+1 = qn.

It is trivial that condition (1) still holds. On the other hand, letting a = w[jn], we have

w[1 : in+1 − 1] = cαn
n una,

w[1 : jn+1 − 1] = cαn+1
n una.

Since w[jn] is also w[in], we have una ∈ Pref(cn). This means that either αn+1 = αn and un+1 = una ∈ Pref(cn+1)
satisfying un+1 ≠ cn+1, or αn+1 = αn + 1, and un+1 = ε. This means that (2) and (3) hold. For condition, (4), j has not
increased so much as to modify the value ofm since jn < qn, thusmn+1 = mn.

2. w[in] = w[jn] and jn = qn (one more reversed pattern, slope is unchanged).
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In this case we have

in+1 = in + 1, jn+1 = jn + 1, pn+1 = pn, qn+1 = qn + pn.

Conditions (1)–(3) are shown exactly the same way as in the previous case. One easily checks that condition (4) still hold
with mn+1 = mn + 1.

3. w[in] = a2, w[jn] = a3 and jn = qn (slope is increased).
In this case, we have

in+1 = 1, jn+1 = jn + 1, pn+1 = jn, qn+1 = 2qn − pn.

Since w[1 : n + 1] = w[1 : pn+1] = cαn+1
n una3 with yn = una3 and una2 ∈ Pref(cn), Lemma 40(1) (see the Appendix)

applies. Thus we have that

cn+1 = cαn+1
n una3 = (cn, cα

n una3) = (xn+1, yn+1) ∈ Ca2<a3 ,

so condition (1) is satisfied.
Conditions (2) and (3) trivially hold with αn+1 = 0 and un+1 = ε.
Finally, condition (4) holds withmn+1 = 0 since

qn+1 = 2qn − pn = 2|cn+1| − |cn| = |cn+1| + |cαn+1
n yn| − |cn| = |cn+1| + |yn+1|,

and |yn+1| ≤ jn+1 − 1 < |cn+1| + |yn+1|. �

Using these invariants, we may now prove the validity and linearity of Algorithm 4.

Proposition 37. Let w ∈ An where A = {a1 < a2 < a3 < a4}, w is a contour word with first letter a2, and let
(u, k) = FLF(w, A). We have exactly the two following cases:
(i) If u ∈ Ca2<a3 then a call to Algorithm 4 with (w, A) as input will return (u, k, true) with time complexity O(k|u|).
(ii) If u ∉ Ca2<a3 then a call to Algorithm 4 with input (w, A) will return (ε, 0, false) while a call to Algorithm 4 with

input (f (w), A) will return (u′, k′, true) where (u′, k′) = FLF(f (w), A) and u′ ∈ Ca2<a3 . Moreover, both calls have time
complexity O(k′|u′|).

Proof. First, suppose that Algorithm 4 returns a triplet of the form (u, k, true). By the validity of the original Duval’s
algorithm, it must be that FLF(w, A) = (u, k) so all that remains to see is that u ∈ Ca2<a3 .

In Lemma 36, conditions (2) and (3) implies that j− i = p at the end of each iteration and so, by condition (1) of the same
lemma, u = w[1 : p] ∈ Ca2<a3 .

In such case, one checks that the time complexity of the algorithm is linear with the length of its output uk.
On the other hand, suppose that Algorithm4 returns the output (ε, 0, false). We show that in such case, FLFone(w, A) ∉

Ca2<a3 .
Let xf be the value of the variable x when the algorithm reached the return on line (∗), also let l = FLFone(w, A) and

l′ = FLFone(f (w), A).
Let us first remark thatw[jf ] ≠ a1, since in this case the algorithmnaturally stops due to the lexical ordering (case above).

Clearly, if w[jf ] = a4 then l contains the letter a4 and l ∉ Ca2<a3 . The only other possibility is

l[if ] = a2, l[jf ] = a3 and jf ≠ qf .

In such case, by Lemma 36, the word w[1 : jf ] has the following form

w[1 : jf ] = cα+1ua3, where c ∈ Ca2<a3 , α ≥ 0, ua2 ∈ Pref(c).

By Lemma 40(3), we have that l ∉ Ca2<a3 . Moreover, let (u′, k′) = FLF(f (w), A), Lemma 40(3) also ensures that
u′ ∈ Ca2<a3 and k′|u′| ≥ |w[1 : jf ]|/2 = jf /2.

Finally, the time complexity of the call to Algorithm 4 with input (w, A) is O(jf ) which is also a O(k′|u′|), while the time
complexity of the call to Algorithm 4 with input (f (w), A) is O(k′|u′|) according to (i). �

6.4. Computational complexity of CMLP algorithm

We can now complete our analysis of the time complexity of the algorithm computing the CMLP.

Theorem 38. Algorithm 3 computes the CMLP of a polyomino in linear time with respect to the size of its contour word.
Proof. Letw be the contourword of the polyominowith |w| = N . We assume first that a call to nextEdge has a complexity
in O(l) (when its output is (x, l, A)). In this case, the overall complexity of Algorithm 3 is O(N). Indeed, all other operations
within the loop at line 3 are in constant time (the copy of w is only a renumbering). Then w is shortened by l (lines 7 and
8) at each iteration until it is reduced to the empty word. It is thus obvious that these complexities sum to the length of the
input word, which is N .

We prove now thatnextEdge has a complexity inO(l).We already showed in the proof of Theorem31 that the first letter
of w when calling nextEdge is a2. Proposition 37 thus holds. In case (i) of this proposition, k|u| = l and we conclude. In
case (ii) of this proposition, the seemingly recursive call to nextEdge has only depth 1 since u′ ∈ Ca2<a3 . We have k′|u′| = l
and the total complexity is O(l)+ O(l), which concludes the argument. �
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Fig. 11. Computation times of AMLP and CMLP as a function of the size N of the shape contour. For both algorithms, the input shape is an ellipse which
may be perturbed by some noise (n = 0, no noise, otherwise n denotes the probability to flip a pixel around the initial contour). Both algorithms are clearly
linear. The CMLP is between 4 and 5 times faster than the AMLP in all cases. Experiments were performed on an Intel(R) Core(TM)2 Duo 3.33 GHz.

Fig. 12. Perimeter estimation of a digital disk with its MLP. We have plotted the relative error between the length of the MLP and the perimeter of the
Euclidean disk. The parameter N is the resolution for sampling the disk.

7. Experimentations and concluding remarks

We have presented two different definitions for the minimum length polygon of a digital contour: one based on an
arithmetic approach, the other based on a combinatorial one. Both are shown to be the unique MLP of the contour, and
linear time algorithms to compute them are provided. Even though we did not prove it, our notion of MLP has no problem
dealing with one pixel wide areas, i.e. holes or bars of one pixel wide, as illustrated in Figs. 13 and 14.

Wehave implemented both algorithms in C++ and both are available at [16].2 Wehave run experiments on various shapes
with increasing size and noise level, so as to estimate the respective execution speeds of these algorithms (see Fig. 11). As
expected, they are both linear in the size of the contour word. However, the constant is smaller for the CMLP (about 5 times
better). As one can see, the CMLP takes about 17.5 ns per contour point on this computer.

As mentioned in the introduction, the MLP of a digital shape is a good perimeter estimator of the underlying Euclidean
shape [19,6] and is proved to be multigrid convergent in O(h) for digitization of convex shapes, where h = 1/N is the grid
step [18,31,32]. We have checked this property on finer and finer digitizations of a Euclidean disk. Fig. 12 shows that this
estimator is indeed convergent but with a speed even faster than the theoretical bound. This discrepancy probably comes
from arithmetic properties of smooth shape digitizations [20].

Finally, note that one could modify the given algorithms in order to remove aligned points. On the other hand, onemight
prefer to keep those redundant points in order to rebuild the original polyomino.

Appendix. Technical lemmata

Lemma 39. Given a word w ∈ {a2 < a3}∗ and two letter a ∈ {a2, a3} and b ∈ A = {a1 < a2 < a3 < a4} such that w = ukp
with k ≥ 1, u ∈ LA, pa ∈ Pref+(u) and pb ∉ Pref(u), then given z = wbs for any suffix s ∈ A∗:
1. if a > b, then FLF(z, A) = (u, k),
2. if a < b, then |FLFone(z, A)| ≥ |ukpb|.
Proof. Using Property 25, one can compute the unique Lyndon factorization of a word z the following way:
– Write z as a list (l1, l2, . . . , ln) of Lyndonwords such that l1l2 · · · ln = w. This is always possible since all letters are Lyndon

words.

2 Use the executable freeman2polygon with option -dCMLP for CMLP and -dCP for AMLP.
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Fig. 13. Examples of MLP.

Fig. 14. Extract of the MLP of a digitized France. The shown area is Brittany.

– If li < li+1 for some i, then replace the pair (li, li+1) by (lili+1) so that the length of the list is reduced by one.
– Repeat the previous step until no such i can be found.

Consider the following factorization of z = ws:

z = (u, . . . , u  
k times

, p1, p2, . . . , pnp , b, s1, s2, . . . , sns) (A.1)

where (p1, p2, . . . , pnp) is the Lyndon factorization of p and (s1, s2, . . . , sns) is the Lyndon factorization of s. Since all words
in this factorization are Lyndonwords, the previous algorithm can be used to compute the Lyndon factorization ofw starting
from there.

Since p1 ∈ Pref(p) and p ∈ Pref(u), the following inequalities hold:

u ≥ p1 ≥ p2 ≥ · · · ≥ pnp and s1 ≥ s2 ≥ · · · ≥ sns .

On the first iteration of the algorithm, the only possible merges are the pair (b, s1) if b < s1, or (pnp , b) if pnb > b. Clearly,
when the algorithm stops, either all factors u were merged together among with p1 · · · pnpb, or none of the factors u have
been merged.

Now, consider the case a > b. In such case, it impossible that any of the factors u is merged. By contradiction, suppose it
is the case. The first factor l1 of the Lyndon factorization of z would be of the form ukpbs′ for some suffix s′. But pbs′ < ukpbs′
which contradicts the definition of a Lyndon word. It must be that FLF(w) = (u, k).

In the other case, that is a < b, again by contradiction, suppose the above algorithm stops and none of the factors uwere
merged. In such case, the Lyndon factorization of z is

(u, . . . , u  
k times

, p1, p2, . . . , pi, p′bs′, sj, . . . , sn)

where 0 ≥ i ≥ np, 0 ≥ j ≥ nz, p′ = pi+1pi+2 · · · pnp and s′ = s1s2 · · · sj−1. Let α be the word such that w = paα. Since u is a
Lyndon word, u < p′aα, but u ≥ p′bs′ > p′aα. Contradiction. �

A similar but more precise result is needed in the case of Christoffel words. In order to lighten the presentation, in this
section, we only consider words written on the two letter alphabet A = {0 < 1}.

Lemma 40. Given awordw of the formw = ckpawhere k ≥ 1, c = (x, y) is a non-trivial Christoffel word, p ∈ Pref+(c), a ∈ A
and pa ∉ Pref(c), then given z = ws for any suffix s ∈ A∗:
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(1) if |pa| = |y| then a = 1, pa = y and w = ckpa = (c, ck−1y) ∈ C,
(2) if |pa| ≠ |y| and a = 0 then FLF(z) = (c, k),
(3) if |pa| ≠ |y| and a = 1 then FLFone(w) ∉ C and given (u,m) = FLF(f (z)) then u ∈ C and |um

| ≥ |w|/2.

Proof. Through this proof, we use the following notation: given a non-trivial Christoffel word X , its central is noted X, so
that X = 0X1, and its complementary Christoffel word is X̂ = 0X1. Similarly, we also write p = 0p.

(1) By Property 35(c), p0 ∈ Pref(c) so that pa = y and

ckpa = (xy)ky = Gk−1
◦ D(x, y) = (xy, (xy)k−1y).

By Theorem 33, ckpa is a valid Christoffel word.
(2) Since all Christoffel words are Lyndon words, Lemma 39 applies proving the result.
(3) Again, Lemma 39 applies so l1 = FLFone(w) is such that |l1| ≥ |ckpa|.

On the other hand, Corollary 34 implies that if l1 ∈ C then it must admit a prefix of the form cny with n ≥ k. Note that y
cannot be a trivial Christoffel word since in such case |p| = 0 implying a = 0. Since 0y is a prefix of c while y = 0y1 is not,
|pa| ≠ |y| and |pa| < |c| implies that l1 is not a Christoffel word.

It remains to show that (u,m) = FLF(f (w)) is such that u ∈ C and |um
| ≥ |w|/2.

In a first time, we consider the case where one of the word x is the trivial Christoffel word 0. One checks that in such case
y = 0n1 for some n ≥ 1, FLF(f (wz)) = 01n(01n+1)k−1 proving the result.

We now assume that both words x and y are non-trivial Christoffel words: x = 0x1 and y = 0y1.
Case 1, k > 1:

By Property 35(b), the central words of Christoffel words are palindromes, so that

c = 0x10y1 = 0y01x1 and ĉ = 0x01y1 = 0y10x1.

Using this property, we have f (w) = ŷ(ŷx̂)k−1p. Moreover, by the unicity of the standard factorization of Christoffel words
and Property 35(a), we have

c = (x, y) ∈ C ⇐⇒ ĉ = (ŷ, x̂) ∈ C.

There are two cases to consider.

1. If |p| < |y|.
One checks that α = ŷ(ŷx̂)k−1 =


ŷ(ŷx̂)k−2, ŷx̂


∈ C ⊂ L and 0x0p ∈ Pref+(α) while 0x0p0 ∉ Pref(α).

2. If |p| ≥ |y|.
In such case, let q be the suffix of p of length |p| − |y|. Since p is prefix of c = 0y01x1, we have that p = 1y1q. Let
α = ŷĉk ∈ C, one checks that f (w) can be written as f (w) = αq0 where q ∈ Pref+(α) and q0 ∉ Pref(α).

In both cases, Lemma 39 applies and we have FLF(f (z)) = (α, 1) with |α| > |w|/2.

Case 2, k = 1.
We assume that |x| > |y|, the case where |x| < |y| is shown in a similar way. Note that c = (x, y) forces that |x| ≠ |y|.
In such case, Theorem 33 implies that there exist a Christoffel word v, |v| < |y|, such that x = vyn = (vyn−1, y) for some

n ≥ 1. Thus w can be written as w = vyn+1p1.
In the case where v is the trivial Christoffel word 0 then y = 0m1 for some m ≥ 1 and one checks that FLF(f (ws)) =

(01m)n+1 proving the result.
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Now consider the case where v = 0v1.

The fact that c, y and v are palindromes implies that

c = v(01y)n+1 = (y10)n+1v.

Now, depending on the length of p, there are three cases to consider.

i. If |p| + |v| < |y|.
We have f (w) = ŷn+10v0p where ŷ ∈ C ⊂ L, 0v0p ∈ Pref+(ŷ) and 0v0p0 ∉ Pref(ŷ). Lemma 39 applies and
FLF(f (z)) = (ŷ, n+ 1) where |ŷn+1| ≥ |w|/2.

ii. If |y| ≤ |p| + |v| < |y| + |v|.
In such case, we have that p is a prefix of y. Moreover, p is long enough so that ŷ is a prefix of 0v01p In such case, let
q be such that 0v01p = ŷq. Consequently, f (w) may be written as f (w) = ŷn+2q0 where q is a proper prefix of ŷ but
q0 ∉ Pref(ŷ). We conclude that FLF(f (z)) = (ŷ, n+ 2) and |ŷn+2| > |w|/2.

iii. If |p| ≥ |y|.
In this case, let q be such that p = 1y1q. Again the palindromic structure of central words allows us towrite v01y = y10v
so that

f (w) = ŷn+10v01y1q0 = ŷn+10y10v1q0 = ŷn+2v̂q0.

One checks that α = ŷn+2v̂ ∈ C ⊂ L and q ∈ Pref+(α) while q0 ∉ Pref(α). By Lemma 39, FLF(f (z)) = (α, 1) with
|α| > |w|/2. �
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