45 research outputs found

    Effect of electro-activated brine solution on the migration of metallic ions from the cans to the product in sterilized canned sweet corn

    Get PDF
    Tinplate cans were used to study if electro-activated brine solution (EAS) is more corrosive than conventional one by ICP analysis. The results showed dif-ferent effects of EAS on cans, alone or filled with product. Acidic EAS (pH 2–3) and Redox +900 to +1200 mV highly reacted with the cans. The concen-trations of Zn, Fe, and Cu in the solution were 0.028, 28.81, and 0.022ppm, respectively. No Sn migration was observed in this case. When neutral or acidic chlorine-free EAS was used, no significant difference was observed in comparison with the corrosivity of standard NaCl brine. Alkaline EAS with pH>10 and negative E (≀−966mV) did not affect Zn, Fe, and Cu migration. However, it affected tin migration. Nevertheless, it is important to mention that even if some corrosion was observed, it was in the limit of the permitted level of concentration when the cans were filled with a product

    Distribution and composition of the lysis cassette of Lactococcus lactis phages and functional analysis of bacteriophage ul36 holin

    Get PDF
    The bacteriophage lysis cassette, which comprises a lysin and a holin gene, was analyzed in 18 Lactococcus lactis phages. A muramidase motif was found in the lysins of c2-like phages, while an amidase motif was observed in the lysins of 936-like phages. Both amidase and muramidase types were detected among the P335 phages. The P335 lysins were separated into three groups based on amino acid sequence identity. A class I holin was recognized in 936-like and c2-like phages, whereas P335-like phages possess class II holins. The P335 holins were further divided into four groups based on sequence identity. Only the holins of 936-like phages contained putative dual-start motifs. The unusual lysis cassette of the highly virulent P335-like phage ul36 contains a unique holin (orf74B) upstream of a lysin which is present in several other P335-like phages. Using the λΔSthf system, we demonstrated that gpORF74B induces cell lysis at the same time as λΔSthf::S105, the effector of λ lysis. Transcriptional analysis of ul36 lysis cassette showed that first transcripts are detected 35 min after infection of L. lactis cells. The lysis clock of phage ul36 appears to be controlled by the late expression of the holin and lysin gene

    The composition of Camembert cheese-ripening cultures modulates both mycelial growth and appearance

    Get PDF
    The fungal microbiota of bloomy-rind cheeses, such as Camembert, forms a complex ecosystem that has not been well studied, and its monitoring during the ripening period remains a challenge. One limitation of enumerating yeasts and molds on traditional agar media is that hyphae are multicellular structures, and colonies on a petri dish rarely develop from single cells. In addition, fungi tend to rapidly invade agar surfaces, covering small yeast colonies and resulting in an underestimation of their number. In this study, we developed a real-time quantitative PCR (qPCR) method using TaqMan probes to quantify a mixed fungal community containing the most common dairy yeasts and molds: Penicillium camemberti, Geotrichum candidum, Debaryomyces hansenii, and Kluyveromyces lactis on soft-cheese model curds (SCMC). The qPCR method was optimized and validated on pure cultures and used to evaluate the growth dynamics of a ripening culture containing P. camemberti, G. candidum, and K. lactis on the surface of the SCMC during a 31-day ripening period. The results showed that P. camemberti and G. candidum quickly dominated the ecosystem, while K. lactis remained less abundant. When added to this ecosystem, D. hansenii completely inhibited the growth of K. lactis in addition to reducing the growth of the other fungi. This result was confirmed by the decrease in the mycelium biomass on SCMC. This study compares culture-dependent and qPCR methods to successfully quantify complex fungal microbiota on a model curd simulating Camembert-type cheese

    Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an in vitro static digestion model

    Get PDF
    Cheese characteristics, such as composition or textural properties, can impact the matrix degradation rate which could modulate the bioaccessibility of fatty acids during digestion. The aim of this study was to identify texture parameters influencing cheese degradation in a gastrointestinal environment. A static in vitro digestion model has been used on nine commercial cheeses: young and aged cheddar, regular and light cream cheese, parmesan, feta, camembert, mozzarella, and sliced processed cheese. At the end of gastric digestion, camembert and mozzarella presented the lowest matrix disintegration whereas aged cheddar, regular and light cream cheeses showed the highest. For all cheeses, the fatty acid release was fast during the first 30 min of duodenal digestion and slowed down afterwards. A partial least square regression revealed that springiness, cohesiveness, and hardness were negatively correlated to the rate of cheese disintegration during gastric digestion. In addition, textural parameters were not correlated with free fatty acid release. By modulating cheese texture, it could be possible to influence matrix disintegration during gastrointestinal digestion which could have an impact on lipids release

    Quantitative PCR reveals the frequency and distribution of 3 indigenous yeast species across a range of specialty cheeses

    Get PDF
    Indigenous microorganisms are important components of the complex ecosystem of many dairy foods including cheeses, and they are potential contributors to the development of a specific cheese's sensory properties. Among these indigenous microorganisms are the yeasts Cyberlindnera jadinii, Pichia kudriavzevii, and Kazachstania servazzii, which were previously detected using traditional microbiological methods in both raw milk and some artisanal specialty cheeses produced in the province of Québec, Canada. However, their levels across different cheese varieties are unknown. A highly specific and sensitive real-time quantitative PCR assay was developed to quantitate these yeast species in a variety of specialty cheeses (bloomy-rind, washed-rind, and natural-rind cheeses from raw, thermized, and pasteurized milks). The specificity of the quantitative PCR assay was validated, and it showed no cross-amplification with 11 other fungal microorganisms usually found in bloomy-rind and washed-rind cheeses. Cyberlindnera jadinii and P. kudriavzevii were found in the majority of the cheeses analyzed (25 of 29 and 24 of 29 cheeses, respectively) in concentrations up to 104 to 108 gene copies/g in the cheese cores, which are considered oxygen-poor environments, and 101 to 104 gene copies/cm2 in the rind. However, their high abundance was not observed in the same samples. Whereas C. jadinii was present and dominant in all core and rind samples, P. kudriavzevii was mostly present in cheese cores. In contrast, K. servazzii was present in the rinds of only 2 cheeses, in concentrations ranging from 101 to 103 gene copies/cm2, and in 1 cheese core at 105 gene copies/g. Thus, in the ecosystems of specialty cheeses, indigenous yeasts are highly frequent but variable, with certain species selectively present in specific varieties. These results shed light on some indigenous yeasts that establish during the ripening of specialty cheeses

    Domestication of different varieties in the cheese-making fungus Geotrichum candidum

    Get PDF
    Domestication is an excellent model for studying adaptation processes, involving recent adaptation and diversification, convergence following adaptation to similar conditions, as well as degeneration of unused functions. Geotrichum candidum is a fungus used for cheese making and is also found in other environments such as soil and plants. By analyzing whole-genome data from 98 strains, we found that all strains isolated from cheese formed a monophyletic clade. Within the cheese clade, we identified three genetically differentiated populations and we detected footprints of recombination and admixture. The genetic diversity in the cheese clade was similar as that in the wild clade, suggesting the lack of strong bottlenecks. Commercial starter strains were scattered across the cheese clade, thus not constituting a single clonal lineage. The cheese populations were phenotypically differentiated from other populations, with a slower growth on all media, even cheese, a prominent production of typical cheese volatiles and a lower proteolytic activity. One of the cheese clusters encompassed all soft goat cheese strains, suggesting an effect of cheese-making practices on differentiation. Another of the cheese populations seemed to represent a more advanced stage of domestication, with stronger phenotypic differentiation from the wild clade, harboring much lower genetic diversity, and phenotypes more typical of cheese fungi, with denser and fluffier colonies and a greater ability of excluding cheese spoiler fungi. Cheese populations lacked two beta lactamase-like genes present in the wild clade, involved in xenobiotic clearance, and displayed higher contents of transposable elements, likely due to relaxed selection. Our findings suggest the existence of genuine domestication in G. candidum, which led to diversification into different varieties with contrasted phenotypes. Some of the traits acquired by cheese strains indicate convergence with other, distantly related fungi used for cheese maturation

    A Framework for the Specificity of Addictions

    Get PDF
    Research over the last two decades suggests that a wide range of substance and behavioral addictions may serve similar functions. Yet, co-occurrence of addictions has only been reported among a minority of addicts. “Addiction specificity” pertains to a phenomenon in which one pattern of addictive behaviors may be acquired whereas another is not. This paper presents the PACE model as a framework which might help explain addiction specificity. Pragmatics, attraction, communication, and expectation (PACE) variables are described, which may help give some direction to future research needs in this arena

    Complete genomic sequence of bacteriophage ul36: demonstration of phage heterogeneity within the P335 quasi-species of lactococcal phages

    Get PDF
    The complete genomic sequence of the Lactococcus lactis virulent phage ul36 belonging to P335 lactococcal phage species was determined and analyzed. The genomic sequence of this lactococcal phage contained 36,798 bp with an overall G+C content of 35.8 mol %. Fifty-nine open reading frames (ORFs) of more than 40 codons were found. N-terminal sequencing of phage structural proteins as well as bioinformatic analysis led to the attribution of a function to 24 ORFs (41%). A lysogeny module was found within the genome of this virulent phage. The putative integrase gene seems to be the product of a horizontal transfer because it is more closely related to Streptococcus pyogenes phages than it is to L. lactis phages. Comparative genome analysis with six complete genomes of temperate P335-like phages confirmed the heterogeneity among phages of P335 species. A dUTPase gene is the only conserved gene among all P335 phages analyzed as well as the phage BK5-T. A genetic relationship between P335 phages and the phage-type of the BK5-T species was established. Thus, we proposed that phage BK5-T be included within the P335 species and thereby reducing the number of lactococcal phage species to 11

    Multiplex PCR for Detection and Identification of Lactococcal Bacteriophages

    No full text
    Three genetically distinct groups of Lactococcus lactis phages are encountered in dairy plants worldwide, namely, the 936, c2, and P335 species. The multiplex PCR method was adapted to detect, in a single reaction, the presence of these species in whey samples or in phage lysates. Three sets of primers, one for each species, were designed based on conserved regions of their genomes. The c2-specific primers were constructed using the major capsid protein gene (mcp) as the target. The mcp sequences for three phages (eb1, Q38, and Q44) were determined and compared with the two available in the databases, those for phages c2 and bIL67. An 86.4% identity was found over the five mcp genes. The gene of the only major structural protein (msp) was selected as a target for the detection of 936-related phages. The msp sequences for three phages (p2, Q7, and Q11) were also established and matched with the available data on phages sk1, bIL170, and F4-1. The comparison of the six msp genes revealed an 82.2% identity. A high genomic diversity was observed among structural proteins of the P335-like phages suggesting that the classification of lactococcal phages within this species should be revised. Nevertheless, we have identified a common genomic region in 10 P335-like phages isolated from six countries. This region corresponded to orfF17-orf18 of phage r1t and orf20-orf21 of Tuc2009 and was sequenced for three additional P335 phages (Q30, P270, and ul40). An identity of 93.4% within a 739-bp region of the five phages was found. The detection limit of the multiplex PCR method in whey was 10(4) to 10(7) PFU/ml and was 10(3) to 10(5) PFU/ml with an additional phage concentration step. The method can also be used to detect phage DNA in whey powders and may also detect prophage or defective phage in the bacterial genome
    corecore