6 research outputs found
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives
H ∞ fuzzy proportional integral state feedback controller of photovoltaic systems under asymmetric actuator constraints
International audienceThis paper presents a new strategy for a robust maximum power point (MPP) tracking fuzzy controller for photovoltaic (PV) systems subject to actuator asymmetric saturation. A DC-DC boost converter is used to connect a PV panel with an output load. The output voltage of the DC-DC boost converter can be adjusted by duty ratio that is limited between 0 and 1. The aim of our control design is to track the MPP under atmospheric condition changes and the presence of the asymmetric saturation of the duty ratio. To minimize tracking error and disturbance effect, the dynamic behaviour of a PV system and its reference model are described by using Takagi–Sugeno fuzzy models. Then, a constrained control based on a fuzzy PI state feedback controller is proposed. The H∞ control approach is used in control design and stability conditions of the closed-loop system are formulated and solved in terms of linear matrix inequalities. Finally, simulation results are given to show the tracking performance of the control design
An Investigation on Torque Ripple Minimization of Switched Reluctance Motor Using Different Power Converter Topologies Using Intelligent Techniques
Smart pipes-instrumented water pipes, can this be made a reality?
Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to) the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods
