311 research outputs found

    Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta

    Get PDF
    Many insects exploit sky light polarization for navigation or cruising-course control. The detection of polarized sky light is mediated by the ommatidia of a small specialized part of the compound eye: the dorsal rim area (DRA). We describe the morphology and fine structure of the DRA in monarch butterflies (Danaus plexippus). The DRA consists of approximately 100 ommatidia forming a narrow ribbon along the dorsal eye margin. Each ommatidium contains two types of photoreceptor with mutually orthogonal microvilli orientations occurring in a 2:6 ratio. Within each rhabdomere, the microvilli are well aligned. Rhabdom structure and orientation remain constant at all retinal levels, but the rhabdom profiles, as seen in tangential sections through the DRA, change their orientations in a fan-like fashion from the frontal to the caudal end of the DRA. Whereas these properties (two microvillar orientations per rhabdom, microvillar alignment along rhabdomeres, ommatidial fan array) are typical for insect DRAs in general, we also report and discuss here a novel feature. The ommatidia of monarch butterflies are equipped with reflecting tapeta, which are directly connected to the proximal ends of the rhabdoms. Although tapeta are also present in the DRA, they are separated from the rhabdoms by a space of approximately 55 μm effectively inactivating them. This reduces self-screening effects, keeping polarization sensitivity of all photoreceptors of the DRA ommatidia both high and approximately equal

    A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect

    Get PDF
    Mass migration of desert locusts is a common phenomenon in North Africa and the Middle East but how these insects navigate is still poorly understood. Laboratory studies suggest that locusts are able to exploit the sky polarization pattern as a navigational cue. Like other insects locusts detect polarized light through a specialized dorsal rim area (DRA) of the eye. Polarization signals are transmitted through the optic lobe to the anterior optic tubercle (AOTu) and, finally, to the central complex in the brain. Whereas neurons of the AOTu integrate sky polarization and chromatic cues in a daytime dependent manner, the central complex holds a topographic representation of azimuthal directions suggesting a role as an internal sky compass. To understand further the integration of sky compass cues we studied polarization-sensitive (POL) neurons in the medulla that may be intercalated between DRA photoreceptors and AOTu neurons. Five types of POL-neuron were characterized and four of these in multiple recordings. All neurons had wide arborizations in medulla layer 4 and most, additionally, in the dorsal rim area of the medulla and in the accessory medulla, the presumed circadian clock. The neurons showed type-specific orientational tuning to zenithal polarized light and azimuth tuning to unpolarized green and UV light spots. In contrast to neurons of the AOTu, we found no evidence for color opponency and daytime dependent adjustment of sky compass signals. Therefore, medulla layer 4 is a distinct stage in the integration of sky compass signals that precedes the time-compensated integration of celestial cues in the AOTu

    Adaptation of a distributed controller depending on morphology

    Full text link
    In this paper, we investigate the influence of an agent’s morphology on its neural controller. Our model consists of a number of identical modules, each of which comprises two half-wheels for movement and a central pattern generator (CPG) as its own neural control. Based on a series of simulation experiments, we conclude that one single type of CPG can adapt well to different types of morphologies, and that there seems to be a suitable or optimal morphology depending on the environmental givens

    Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama

    Get PDF
    Ants use the panoramic skyline in part to determine a direction of travel. A theoretically elegant way to define where terrestrial objects meet the sky is to use an opponent-process channel contrasting green wavelengths of light with ultraviolet (UV) wavelengths. Compared with the sky, terrestrial objects reflect relatively more green wavelengths. Using such an opponent-process channel gains constancy in the face of changes in overall illumination level. We tested the use of UV wavelengths in desert ants by using a plastic that filtered out most of the energy below 400 nm. Ants, Melophorus bagoti, were trained to home with an artificial skyline provided by an arena (experiment 1) or with the natural panorama (experiment 2). On a test, a homing ant was captured just before she entered her nest, and then brought back to a replicate arena (experiment 1) or the starting point (the feeder, experiment 2) and released. Blocking UV light led to deteriorations in orientation in both experiments. When the artificial skyline was changed from opaque to transparent UV-blocking plastic (experiment 3) on the other hand, the ants were still oriented. We conclude that UV wavelengths play a crucial role in determining direction based on the terrestrial surround.10 page(s

    Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model

    Get PDF
    We have carried out Density Matrix Renormalization Group (DMRG) calculations on the ground state of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian. The PPP model includes long-range electron correlations which are required for physically realistic modeling of conjugated polymers. We have obtained the ground state energy as a function of the dimerization δ\delta and various correlation functions and structure factors for δ=0\delta=0. From energetics, we find that while the nature of the Peierls' instabilityin polyacene is conditional and strong electron correlations enhance the dimerization. The {\it cis} form of the distortion is favoured over the {\it trans} form. However, from the analysis of correlation functions and associated structure factors, we find that polyacene is not susceptible to the formation of a bond order wave (BOW), spin density wave (SDW) or a charge density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure

    Palaeozoic giant dragonfies were hawker predators

    Get PDF
    The largest insects to have ever lived were the giant meganeurids of the Late Palaeozoic, ancient stem relatives of our modern dragonfies. With wingspans up to 71cm, these iconic insects have been the subject of varied documentaries on Palaeozoic life, depicting them as patrolling for prey through coal swamp forests amid giant lycopsids, and cordaites. Such reconstructions are speculative as few defnitive details of giant dragonfy biology are known. Most specimens of giant dragonfies are known from wings or isolated elements, but Meganeurites gracilipes preserves critical body structures, most notably those of the head. Here we show that it is unlikely it thrived in densely forested environments where its elongate wings would have become easily damaged. Instead, the species lived in more open habitats and possessed greatly enlarged compound eyes. These were dorsally hypertrophied, a specialization for long-distance vision above the animal in fight, a trait convergent with modern hawker dragonfies. Sturdy mandibles with acute teeth, strong spines on tibiae and tarsi, and a pronounced thoracic skewness are identical to those specializations used by dragonfies in capturing prey while in fight. The Palaeozoic Odonatoptera thus exhibited considerable morphological specializations associated with behaviours attributable to ‘hawkers’ or ‘perchers’ among extant Odonata.This work benefted from a grant of the French ‘Agence Nationale de la Recherche’ via the program ‘Investissements d’avenir’ (ANR-11-INBS-0004-RECOLNAT)JP and MP gratefully acknowledge research support from the Grant Agency of the Czech Republic No. 18-03118 SThe work of MSE was supported by US National Science Foundation grant DEB-114416

    The spectral, spatial and contrast sensitivity of human polarization pattern perception

    Get PDF
    It is generally believed that humans perceive linear polarized light following its conversion into a luminance signal by diattenuating macular structures. Measures of polarization sensitivity may therefore allow a targeted assessment of macular function. Our aim here was to quantify psychophysical characteristics of human polarization perception using grating and optotype stimuli defined solely by their state of linear polarization. We show: (i) sensitivity to polarization patterns follows the spectral sensitivity of macular pigment; (ii) the change in sensitivity across the central field follows macular pigment density; (iii) polarization patterns are identifiable across a range of contrasts and scales, and can be resolved with an acuity of 15.4 cycles/degree (0.29 logMAR); and (iv) the human eye can discriminate between areas of linear polarization differing in electric field vector orientation by as little as 4.4°. These findings, which support the macular diattenuator model of polarization sensitivity, are unique for vertebrates and approach those of some invertebrates with a well-developed polarization sense. We conclude that this sensory modality extends beyond Haidinger's brushes to the recognition of quantifiable spatial polarization-modulated patterns. Furthermore, the macular origin and sensitivity of human polarization pattern perception makes it potentially suitable for the detection and quantification of macular dysfunction

    Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance

    Get PDF
    BACKGROUND: Steroid receptor coactivator 3 (SRC3) is an important coactivator of a number of transcription factors and is associated with a poor outcome in numerous tumours. Steroid receptor coactivator 3 is amplified in 25% of epithelial ovarian cancers (EOCs) and its expression is higher in EOCs compared with non-malignant tissue. No data is currently available with regard to the expression of SRC-3 in EOC and its influence on outcome or the efficacy of treatment. METHODS: Immunohistochemistry was performed for SRC3, oestrogen receptor-α, HER2, PAX2 and PAR6, and protein expression was quantified using automated quantitative immunofluorescence (AQUA) in 471 EOCs treated between 1991 and 2006 with cytoreductive surgery followed by first-line treatment platinum-based therapy, with or without a taxane. RESULTS: Steroid receptor coactivator 3 expression was significantly associated with advanced stage and was an independent prognostic marker. High expression of SRC3 identified patients who have a significantly poorer survival with single-agent carboplatin chemotherapy, while with carboplatin/paclitaxel treatment such a difference was not seen. CONCLUSION: Steroid receptor coactivator 3 is a poor prognostic factor in EOCs and appears to identify a population of patients who would benefit from the addition of taxanes to their chemotherapy regimen, due to intrinsic resistance to platinum therapy

    Iroquois Complex Genes Induce Co-Expression of rhodopsins in Drosophila

    Get PDF
    The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the “one receptor–one neuron” rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia
    corecore