1,282 research outputs found

    Experimental evidence of accelerated energy transfer in turbulence

    Full text link
    We investigate the vorticity dynamics in a turbulent vortex using scattering of acoustic waves. Two ultrasonic beams are adjusted to probe simultaneously two spatial scales in a given volume of the flow, thus allowing a dual channel recording of the dynamics of coherent vorticity structures. Our results show that this allows to measure the average energy transfer time between different spatial length scales, and that such transfer goes faster at smaller scales.Comment: 5 pages, 5 figure

    Ultradeep Infrared Array Camera Observations of sub-L* z~7 and z~8 Galaxies in the Hubble Ultra Deep Field: the Contribution of Low-Luminosity Galaxies to the Stellar Mass Density and Reionization

    Full text link
    We study the Spitzer Infrared Array Camera (IRAC) mid-infrared (rest-frame optical) fluxes of 14 newly WFC3/IR-detected z=7 z_{850}-dropout galaxies and 5 z=8 Y_{105}-dropout galaxies. The WFC3/IR depth and spatial resolution allow accurate removal of contaminating foreground light, enabling reliable flux measurements at 3.6 micron and 4.5 micron. None of the galaxies are detected to [3.6]=26.9 (AB, 2 sigma), but a stacking analysis reveals a robust detection for the z_{850}-dropouts and an upper limit for the Y_{105}-dropouts. We construct average broadband SEDs using the stacked ACS, WFC3, and IRAC fluxes and fit stellar population synthesis models to derive mean redshifts, stellar masses, and ages. For the z_{850}-dropouts, we find z=6.9^{+0.1}_{-0.1}, (U-V)_{rest}=0.4, reddening A_V=0, stellar mass M*=1.2^{+0.3}_{-0.6} x 10^9 M_sun (Salpeter IMF). The best-fit ages ~300Myr, M/L_V=0.2, and SSFR=1.7Gyr^{-1} are similar to values reported for luminous z=7 galaxies, indicating the galaxies are smaller but not younger. The sub-L* galaxies observed here contribute significantly to the stellar mass density and under favorable conditions may have provided enough photons for sustained reionization at 7<z<11. In contrast, the z=8.3^{+0.1}_{-0.2} Y_{105}-dropouts have stellar masses that are uncertain by 1.5 dex due to the near-complete reliance on far-UV data. Adopting the 2 sigma upper limit on the M/L(z=8), the stellar mass density to M_{UV,AB} < -18 declines from rho*(z=7)=3.7^{+1.0}_{-1.8} x 10^6 M_sun Mpc^{-3} to rho*(z=8) < 8 x 10^5 M_sun Mpc^{-3}, following (1+z)^{-6} over 3<z<8. Lower masses at z=8 would signify more dramatic evolution, which can be established with deeper IRAC observations, long before the arrival of the James Webb Space Telescope.Comment: 6 pages, 3 figures, 2 tables, emulateapj, accepted for publication in ApJ

    The GREATS Hβ\beta+[OIII] Luminosity Function and Galaxy Properties at z8\mathbf{z\sim8}: Walking the Way of JWST

    Get PDF
    The James Webb Space Telescope will allow to spectroscopically study an unprecedented number of galaxies deep into the reionization era, notably by detecting [OIII] and Hβ\beta nebular emission lines. To efficiently prepare such observations, we photometrically select a large sample of galaxies at z8z\sim8 and study their rest-frame optical emission lines. Combining data from the GOODS Re-ionization Era wide-Area Treasury from Spitzer (GREATS) survey and from HST, we perform spectral energy distribution (SED) fitting, using synthetic SEDs from a large grid of photoionization models. The deep Spitzer/IRAC data combined with our models exploring a large parameter space enables to constrain the [OIII]+Hβ\beta fluxes and equivalent widths for our sample, as well as the average physical properties of z8z\sim8 galaxies, such as the ionizing photon production efficiency with log(ξion/erg1Hz)25.77\log(\xi_\mathrm{ion}/\mathrm{erg}^{-1}\hspace{1mm}\mathrm{Hz})\geq25.77. We find a relatively tight correlation between the [OIII]+Hβ\beta and UV luminosity, which we use to derive for the first time the [OIII]+Hβ\beta luminosity function (LF) at z8z\sim8. The z8z\sim8 [OIII]+Hβ\beta LF is higher at all luminosities compared to lower redshift, as opposed to the UV LF, due to an increase of the [OIII]+Hβ\beta luminosity at a given UV luminosity from z3z\sim3 to z8z\sim8. Finally, using the [OIII]+Hβ\beta LF, we make predictions for JWST/NIRSpec number counts of z8z\sim8 galaxies. We find that the current wide-area extragalactic legacy fields are too shallow to use JWST at maximal efficiency for z8z\sim8 spectroscopy even at 1hr depth and JWST pre-imaging to 30\gtrsim30 mag will be required.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Structure and star formation in galaxies out to z=3: evidence for surface density dependent evolution and upsizing

    Full text link
    We present an analysis of galaxies in the CDF-South. We find a tight relation to z=3 between color and size at a given mass, with red galaxies being small, and blue galaxies being large. We show that the relation is driven by stellar surface density or inferred velocity dispersion: galaxies with high surface density are red and have low specific star formation rates, and galaxies with low surface density are blue and have high specific star formation rates. Surface density and inferred velocity dispersion are better correlated with specific star formation rate and color than stellar mass. Hence stellar mass by itself is not a good predictor of the star formation history of galaxies. In general, galaxies at a given surface density have higher specific star formation rates at higher redshift. Specifically, galaxies with a surface density of 1-3 10^9 Msun/kpc^2 are "red and dead" at low redshift, approximately 50% are forming stars at z=1, and almost all are forming stars by z=2. This provides direct additional evidence for the late evolution of galaxies onto the red sequence. The sizes of galaxies at a given mass evolve like 1/(1+z)^(0.59 +- 0.10). Hence galaxies undergo significant upsizing in their history. The size evolution is fastest for the highest mass galaxies, and quiescent galaxies. The persistence of the structural relations from z=0 to z=2.5, and the upsizing of galaxies imply that a relation analogous to the Hubble sequence exists out to z=2.5, and possibly beyond. The star forming galaxies at z >= 1.5 are quite different from star forming galaxies at z=0, as they have likely very high gas fractions, and star formation time scales comparable to the orbital time.Comment: 20 pages, accepted for publication in ApJ, 2008, 68

    Expanded Search for z~10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z>8?

    Full text link
    We search for z~10 galaxies over ~160 arcmin^2 of WFC3/IR data in the Chandra Deep Field South, using the public HUDF09, ERS, and CANDELS surveys, that reach to 5sigma depths ranging from 26.9 to 29.4 in H_160 AB mag. z>~9.5 galaxy candidates are identified via J_125-H_160>1.2 colors and non-detections in any band blueward of J_125. Spitzer IRAC photometry is key for separating the genuine high-z candidates from intermediate redshift (z~2-4) galaxies with evolved or heavily dust obscured stellar populations. After removing 16 sources of intermediate brightness (H_160~24-26 mag) with strong IRAC detections, we only find one plausible z~10 galaxy candidate in the whole data set, previously reported in Bouwens et al. (2011). The newer data cover a 3x larger area and provide much stronger constraints on the evolution of the UV luminosity function (LF). If the evolution of the z~4-8 LFs is extrapolated to z~10, six z~10 galaxies are expected in our data. The detection of only one source suggests that the UV LF evolves at an accelerated rate before z~8. The luminosity density is found to increase by more than an order of magnitude in only 170 Myr from z~10 to z~8. This increase is >=4x larger than expected from the lower redshift extrapolation of the UV LF. We are thus likely witnessing the first rapid build-up of galaxies in the heart of cosmic reionization. Future deep HST WFC3/IR data, reaching to well beyond 29 mag, can enable a more robust quantification of the accelerated evolution around z~10.Comment: 13 pages, 11 figures, ApJ resubmitted after referee repor

    Finite size scaling in the 2D XY-model and generalized universality

    Full text link
    In recent works (BHP), a generalized universality has been proposed, linking phenomena as dissimilar as 2D magnetism and turbulence. To test these ideas, we performed a MC study of the 2D XY-model. We found that the shape of the probability distribution function for the magnetization M is non Gaussian and independent of the system size --in the range of the lattice sizes studied-- below the Kosterlitz-Thoules temperature. However, the shape of these distributions does depend on the temperature, contrarily to the BHP's claim. This behavior is successfully explained by using an extended finite-size scaling analysis and the existence of bounds for M.Comment: 7 pages, 5 figures. Submitted to Phys. Rev. Lett. Details of changes: 1. We emphasized in the abstract the range of validity of our results. 2. In the last paragraph the temperature dependence of the PDF was slightly re-formulate
    corecore