391 research outputs found
Roadmap for investment in the seed potato value chain in Eastern Africa
This roadmap describes the five-year strategy in five african countries (Ethiopia, Kenya, Rwanda, Tanzania and Uganda) to target business investments in key areas along the seed potato value chain to increase the availability of high-quality seed potatoes and promote improved seed management. The approaches presented in the rRoadmap are consistent with those laid out in USAID’s comprehensive Feed the Future initiative and are supportive of development themes and programs of other multilateral donors
Temperature dependence of the magnetization processes in Co/Al oxide/Permalloy trilayers
The magnetization process of Co/Al oxide/Py trilayers and its evolution with the temperature have been analyzed. The particular behavior of the Co layers, including the shift of the hysteresis loops and a coercivity increase with the decrease of temperature, is related with the apparition of a CoO layer at the Co/Al-oxide interface
Normalization factors for magnetic relaxation of small particle systems in non-zero magnetic field
We critically discuss relaxation experiments in magnetic systems that can be
characterized in terms of an energy barrier distribution, showing that proper
normalization of the relaxation data is needed whenever curves corresponding to
different temperatures are to be compared. We show how these normalization
factors can be obtained from experimental data by using the
scaling method without making any assumptions about the nature of the energy
barrier distribution. The validity of the procedure is tested using a
ferrofluid of Fe_3O_4 particles.Comment: 5 pages, 6 eps figures added in April 22, to be published in Phys.
Rev. B 55 (1 April 1997
Shifted loops and coercivity from field imprinted high energy barriers in ferritin and ferrihydrite nanoparticles
We show that the coercive field in ferritin and ferrihydrite depends on the
maximum magnetic field in a hysteresis loop and that coercivity and loop shifts
depend both on the maximum and cooling fields. In the case of ferritin we show
that the time dependence of the magnetization also depends on the maximum and
previous cooling fields. This behavior is associated to changes in the
intra-particle energy barriers imprinted by these fields. Accordingly, the
dependence of the coercive and loop shift fields with the maximum field in
ferritin and ferrihydrite can be described within the frame of a
uniform-rotation model considering a dependence of the energy barrier with the
maximum and the cooling fields.Comment: 8 pages, 5 figures. Accepted for publication in Phys. Rev. B. Final
version with improved writing and figure
Magnetic behaviour of ferromagnets with random anisotropy
This article reports on a magnetometric study of the effects of diluted local random anisotropy in a ferromagnetic Fe80B20 amorphous matrix. In the low‐temperature and low‐field regime the samples, Fe74RE6B20 (RE=Nd, Ce), show a very rich behavior as a consequence of the competition between, and different dependence on T, of the correlation length associated with local random anisotropy and exchange interactions. In the high‐field regime (Happlied≥1.5 kOe) we observe ferromagnetic behavior with the saturation magnetization varying with temperature according to Bloch’s law. The spin wave stiffness constant D could be determined and lies close to 100 meVÅ2
Magnetic Field scaling of Relaxation curves in Small Particle Systems
We study the effects of the magnetic field on the relaxation of the
magnetization of small monodomain non-interacting particles with random
orientations and distribution of anisotropy constants. Starting from a master
equation, we build up an expression for the time dependence of the
magnetization which takes into account thermal activation only over barriers
separating energy minima, which, in our model, can be computed exactly from
analytical expressions. Numerical calculations of the relaxation curves for
different distribution widths, and under different magnetic fields H and
temperatures T, have been performed. We show how a \svar scaling of the
curves, at different T and for a given H, can be carried out after proper
normalization of the data to the equilibrium magnetization. The resulting
master curves are shown to be closely related to what we call effective energy
barrier distributions, which, in our model, can be computed exactly from
analytical expressions. The concept of effective distribution serves us as a
basis for finding a scaling variable to scale relaxation curves at different H
and a given T, thus showing that the field dependence of energy barriers can be
also extracted from relaxation measurements.Comment: 12 pages, 9 figures, submitted to Phys. Rev.
Finite-Size and surface effects in maghemite nanoparticles: Monte Carlo simulations
Finite-size and surface effects in fine particle systems are investigated by
Monte Carlo simulation of a model of a -FeO (maghemite) single
particle. Periodic boundary conditions have been used to simulate the bulk
properties and the results compared with those for a spherical shaped particle
with free boundaries to evidence the role played by the surface on the
anomalous magnetic properties displayed by these systems at low temperatures.
Several outcomes of the model are in qualitative agreement with the
experimental findings. A reduction of the magnetic ordering temperature,
spontaneous magnetization, and coercive field is observed as the particle size
is decreased. Moreover, the hysteresis loops become elongated with high values
of the differential susceptibility, resembling those from frustrated or
disordered systems. These facts are consequence of the formation of a surface
layer with higher degree of magnetic disorder than the core, which, for small
sizes, dominates the magnetization processes of the particle. However, in
contradiction with the assumptions of some authors, our model does not predict
the freezing of the surface layer into a spin-glass-like state. The results
indicate that magnetic disorder at the surface simply facilitates the thermal
demagnetization of the particle at zero field, while the magnetization is
increased at moderate fields, since surface disorder diminishes ferrimagnetic
correlations within the particle. The change in shape of the hysteresis loops
with the particle size demonstrates that the reversal mode is strongly
influenced by the reduced atomic coordination and disorder at the surface.Comment: Twocolumn RevTex format. 19 pages, 15 Figures included. Submitted to
Phys. Rev.
Martensitic transition and magnetoresistance in a Cu-Al-Mn shape memory alloy. Influence of aging
We have studied the effect of ageing within the miscibility gap on the
electric, magnetic and thermodynamic properties of a non-stoichiometric Heusler
Cu-Al-Mn shape-memory alloy, which undergoes a martensitic transition from a
-based (-phase) towards a close-packed structure (-phase).
Negative magnetoresistance which shows an almost linear dependence on the
square of magnetization with different slopes in the - and -phases,
was observed. This magnetoresistive effect has been associated with the
existence of Mn-rich clusters with the CuAlMn-structure. The effect of an
applied magnetic field on the martensitic transition has also been studied. The
entropy change between the - and -phases shows negligible dependence
on the magnetic field but it decreases significantly with annealing time within
the miscibility gap. Such a decrease is due to the increasing amount of
CuMnAl-rich domains that do not transform martensitically.Comment: 9 pages, 9 figures, accepted for publication in PR
- …
