115 research outputs found

    Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007

    Get PDF
    Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) in the lower troposphere. Understanding HONO chemistry, particularly its sources and contribution to HO_x (=OH+HO_2) production, is very important for understanding atmospheric oxidation processes. A highly sensitive instrument for detecting atmospheric HONO based on wet chemistry followed by liquid waveguide long path absorption photometry was deployed in the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at Blodgett Forest, California in late summer 2007. The median diurnal variation shows minimum HONO levels of about 20–30 pptv during the day and maximum levels of about 60–70 pptv at night, a diurnal pattern quite different from the results at various other forested sites. Measured HONO/NO_2 ratios for a 24-h period ranged from 0.05 to 0.13 with a mean ratio of 0.07. Speciation of reactive nitrogen compounds (NO_y) indicates that HONO accounted for only ~3% of total NO_y. However, due to the fast HONO loss through photolysis, a strong HONO source (1.59 ppbv day^(−1)) existed in this environment in order to sustain the observed HONO levels, indicating the significant role of HONO in NO_y cycling. The wet chemistry HONO measurements were compared to the HONO measurements made with a Chemical Ionization Mass Spectrometer (CIMS) over a three-day period. Good agreement was obtained between the measurements from the two different techniques. Using the expansive suite of photochemical and meteorological measurements, the contribution of HONO photolysis to HO_x budget was calculated to be relatively small (6%) compared to results from other forested sites. The lower HONO mixing ratio and thus its smaller contribution to HO_x production are attributed to the unique meteorological conditions and low acid precipitation at Blodgett Forest. Further studies of HONO in this kind of environment are needed to test this hypothesis and to improve our understanding of atmospheric oxidation and nitrogen budget

    Global Journalist: America's hunt for terrorists and Venezuela’s political crisis

    Get PDF
    On this December 19, 2002 program, journalists discuss a new U.S. order permitting the assassination of terrorists and a brewing political crisis Venezuela and what it means for global oil markets

    Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007

    Get PDF
    Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) in the lower troposphere. Understanding HONO chemistry, particularly its sources and contribution to HO<sub>x</sub> (=OH+HO<sub>2</sub>) production, is very important for understanding atmospheric oxidation processes. A highly sensitive instrument for detecting atmospheric HONO based on wet chemistry followed by liquid waveguide long path absorption photometry was deployed in the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at Blodgett Forest, California in late summer 2007. The median diurnal variation shows minimum HONO levels of about 20–30 pptv during the day and maximum levels of about 60–70 pptv at night, a diurnal pattern quite different from the results at various other forested sites. Measured HONO/NO<sub>2</sub> ratios for a 24-h period ranged from 0.05 to 0.13 with a mean ratio of 0.07. Speciation of reactive nitrogen compounds (NO<sub>y</sub>) indicates that HONO accounted for only ~3% of total NO<sub>y</sub>. However, due to the fast HONO loss through photolysis, a strong HONO source (1.59 ppbv day<sup>−1</sup>) existed in this environment in order to sustain the observed HONO levels, indicating the significant role of HONO in NO<sub>y</sub> cycling. The wet chemistry HONO measurements were compared to the HONO measurements made with a Chemical Ionization Mass Spectrometer (CIMS) over a three-day period. Good agreement was obtained between the measurements from the two different techniques. Using the expansive suite of photochemical and meteorological measurements, the contribution of HONO photolysis to HO<sub>x</sub> budget was calculated to be relatively small (6%) compared to results from other forested sites. The lower HONO mixing ratio and thus its smaller contribution to HO<sub>x</sub> production are attributed to the unique meteorological conditions and low acid precipitation at Blodgett Forest. Further studies of HONO in this kind of environment are needed to test this hypothesis and to improve our understanding of atmospheric oxidation and nitrogen budget

    Newborn screening in the US may miss mild persistent hypothyroidism

    Get PDF
    Objective To determine if newborn screening (NBS) programs for congenital hypothyroidism in the US use thyroid-stimulating hormone (TSH) cutoffs that are age adjusted to account for the physiologic 4-fold reduction in TSH concentrations over the first few days of life. Study design All NBS programs in the US were contacted and asked to provide information on their NBS protocols, TSH cutoffs, and whether these cutoffs were age adjusted. Results Of 51 NBS programs, 28 request a repeat specimen if the initial eluted serum TSH concentration is mildly increased (between the cutoff and a median upper limit of 50 mU/L), whereas 14 programs perform a routine second screen in all infants. Although these specimens are typically collected between 1 week and 1 month of life, 16 of the 28 programs with a discretionary second test and 8 of 14 programs with a routine second test do not have age-adjusted TSH cutoffs after the first 48 hours of life. Conclusions There is variation in NBS practices for screening for congenital hypothyroidism across the US, and many programs do not adjust the TSH cutoff beyond the first 2 days of life. Samples are processed when received from older infants, often to retest borderline initial results. This approach will miss congenital hypothyroidism in infants with persistent mild TSH elevations. We recommend that all NBS programs provide age-adjusted TSH cutoffs, and suggest developing a standard approach to screening for congenital hypothyroidism in the US. © 2017 Elsevier Inc

    Assessing fossil fuel CO_2 emissions in California using atmospheric observations and models

    Get PDF
    Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO_2 (ffCO_2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO_2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO_2 by measuring radiocarbon (^(14)C) in CO_2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO_2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO_2 emissions are consistent with the California Air Resources Board's reported ffCO_2 emissions, providing tentative validation of California's reported ffCO_2 emissions in 2014–15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO_2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions

    Congenital hypothyroidism

    Get PDF
    Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis of infants detected by screening and started on treatment early is excellent, with IQs similar to sibling or classmate controls. Studies show that a lower neurocognitive outcome may occur in those infants started at a later age (> 30 days of age), on lower l-thyroxine doses than currently recommended, and in those infants with more severe hypothyroidism

    Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection

    Get PDF
    Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity

    A genome-wide screening uncovers the role of CCAR2 as an antagonist of DNA end resection

    Get PDF
    There are two major and alternative pathways to repair DNA double-strand breaks: non-homologous end-joining and homologous recombination. Here we identify and characterize novel factors involved in choosing between these pathways; in this study we took advantage of the SeeSaw Reporter, in which the repair of double-strand breaks by homology-independent or -dependent mechanisms is distinguished by the accumulation of green or red fluorescence, respectively. Using a genome-wide human esiRNA (endoribonuclease- prepared siRNA) library, we isolate genes that control the recombination/endjoining ratio. Here we report that two distinct sets of genes are involved in the control of the balance between NHEJ and HR: those that are required to facilitate recombination and those that favour NHEJ. This last category includes CCAR2/DBC1, which we show inhibits recombination by limiting the initiation and the extent of DNA end resection, thereby acting as an antagonist of CtIP

    The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 2: Application to BEARPEX-2007 observations

    Get PDF
    In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE) model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007). In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes. CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH) concentrations observed during a warm (~29 °C) period. Modeled fluxes of acyl peroxy nitrates (APN) are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN) fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NO_y) species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO_2 fluxes cause the net above-canopy NO_y flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be only weakly coupled with the upper canopy. Future efforts to model forest-atmosphere exchange will require a more mechanistic understanding of non-stomatal deposition and a more thorough characterization of in-canopy mixing processes
    corecore