17 research outputs found

    Research applications of primary biodiversity databases in the digital age.

    Get PDF
    Our world is in the midst of unprecedented change-climate shifts and sustained, widespread habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction events. At the same time, new approaches to publishing and integrating previously disconnected data resources promise to help provide the evidence needed for more efficient and effective conservation and management. Stakeholders have invested considerable resources to contribute to online databases of species occurrences. However, estimates suggest that only 10% of biocollections are available in digital form. The biocollections community must therefore continue to promote digitization efforts, which in part requires demonstrating compelling applications of the data. Our overarching goal is therefore to determine trends in use of mobilized species occurrence data since 2010, as online systems have grown and now provide over one billion records. To do this, we characterized 501 papers that use openly accessible biodiversity databases. Our standardized tagging protocol was based on key topics of interest, including: database(s) used, taxa addressed, general uses of data, other data types linked to species occurrence data, and data quality issues addressed. We found that the most common uses of online biodiversity databases have been to estimate species distribution and richness, to outline data compilation and publication, and to assist in developing species checklists or describing new species. Only 69% of papers in our dataset addressed one or more aspects of data quality, which is low considering common errors and biases known to exist in opportunistic datasets. Globally, we find that biodiversity databases are still in the initial stages of data compilation. Novel and integrative applications are restricted to certain taxonomic groups and regions with higher numbers of quality records. Continued data digitization, publication, enhancement, and quality control efforts are necessary to make biodiversity science more efficient and relevant in our fast-changing environment

    Research applications of primary biodiversity databases in the digital age

    Get PDF
    Our world is in the midst of unprecedented change-climate shifts and sustained, widespread habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction events. At the same time, new approaches to publishing and integrating previously disconnected data resources promise to help provide the evidence needed for more efficient and effective conservation and management. Stakeholders have invested considerable resources to contribute to online databases of species occurrences. However, estimates suggest that only 10% of biocollections are available in digital form. The biocollections community must therefore continue to promote digitization efforts, which in part requires demonstrating compelling applications of the data. Our overarching goal is therefore to determine trends in use of mobilized species occurrence data since 2010, as online systems have grown and now provide over one billion records. To do this, we characterized 501 papers that use openly accessible biodiversity databases. Our standardized tagging protocol was based on key topics of interest, including: database(s) used, taxa addressed, general uses of data, other data types linked to species occurrence data, and data quality issues addressed

    FloraTraiter: Automated parsing of traits from descriptive biodiversity literature

    No full text
    Abstract Premise Plant trait data are essential for quantifying biodiversity and function across Earth, but these data are challenging to acquire for large studies. Diverse strategies are needed, including the liberation of heritage data locked within specialist literature such as floras and taxonomic monographs. Here we report FloraTraiter, a novel approach using rule‐based natural language processing (NLP) to parse computable trait data from biodiversity literature. Methods FloraTraiter was implemented through collaborative work between programmers and botanical experts and customized for both online floras and scanned literature. We report a strategy spanning optical character recognition, recognition of taxa, iterative building of traits, and establishing linkages among all of these, as well as curational tools and code for turning these results into standard morphological matrices. Results Over 95% of treatment content was successfully parsed for traits with <1% error. Data for more than 700 taxa are reported, including a demonstration of common downstream uses. Conclusions We identify strategies, applications, tips, and challenges that we hope will facilitate future similar efforts to produce large open‐source trait data sets for broad community reuse. Largely automated tools like FloraTraiter will be an important addition to the toolkit for assembling trait data at scale

    The importance of digitized biocollections as a source of trait data and a new VertNet resource

    Get PDF
    For vast areas of the globe and large parts of the tree of life, data needed to inform trait diversity is incomplete. Such trait data, when fully assembled, however, form the link between the evolutionary history of organisms, their assembly into communities, and the nature and functioning of ecosystems. Recent efforts to close data gaps have focused on collating trait-by-species databases, which only provide species-level, aggregated value ranges for traits of interest and often lack the direct observations on which those ranges are based. Perhaps under-appreciated is that digitized biocollection records collectively contain a vast trove of trait data measured directly from individuals, but this content remains hidden and highly heterogeneous, impeding discoverability and use. We developed and deployed a suite of openly accessible software tools in order to collate a full set of trait descriptions and extract two key traits, body length and mass, from >18 million specimen records in VertNet, a global biodiversity data publisher and aggregator. We tested success rate of these tools against hand-checked validation data sets and characterized quality and quantity. A post-processing toolkit was developed to standardize and harmonize data sets, and to integrate this improved content into VertNet for broadest reuse. The result of this work was to add more than 1.5 million harmonized measurements on vertebrate body mass and length directly to specimen records. Rates of false positives and negatives for extracted data were extremely low. We also created new tools for filtering, querying, and assembling this research-ready vertebrate trait content for view and download. Our work has yielded a novel database and platform for harmonized trait content that will grow as tools introduced here become part of publication workflows. We close by noting how this effort extends to new communities already developing similar digitized content.Fil: Guralnick, Robert P.. University of Florida; Estados UnidosFil: Zermoglio, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universite Francois Rabelais; FranciaFil: Wieczorek, John. University of California at Berkeley; Estados UnidosFil: LaFrance, Raphael. University of Florida; Estados UnidosFil: Bloom, David. University of Florida; Estados UnidosFil: Russell, Laura. University of Florida; Estados Unidos. University of Kansas; Estados Unido

    Use of Online Species Occurrence Databases in Published Research since 2010

    No full text
    Museums and funding agencies have invested considerable resources in recent years to digitize information from natural history specimens and contribute to online species occurrence databases. Such efforts are necessary to reap the full benefits of irreplaceable historical data by making them openly accessible and allowing the integration of collections data with other datasets. However, recent estimates suggest that still only 10% of biocollections are available in digital form. The biocollections community must therefore continue to justify and promote digitization efforts, particularly for high-diversity groups with large numbers of specimens, such as invertebrates.  Our overarching goal is to determine how uses of biodiversity databases have developed in recent years, as more data has come online. To this end, we present a bibliometric analysis of published research to characterize uses of online species occurrence databases since 2010. Relevant papers for this analysis include those that use online and openly accessible primary occurrence records, or those that add data to an online database. Google Scholar (GS) provides full-text indexing, which was important to identify data sources that often appear buried in the methods section of a paper. Our search was therefore restricted to GS. We drew a list of relevant search terms and downloaded all records returned by each search (or the first 500 if there were more) into a Zotero reference management database. About one third of the 2500 papers in the final dataset were relevant. Three of the authors with specialized knowledge of the field characterized relevant papers using a standardized tagging protocol based on a series of key topics of interest. We developed a list of potential tags and descriptions for each topic, including: database(s) used, database accessibility, scale of study, region of study, taxa addressed, general use of data, other data types linked to species occurrence data, data quality issues addressed, authors, institutions, and funding sources. Each tagged paper was thoroughly checked by a second tagger. The final dataset of tagged papers allow us to quantify general areas of research made possible by the expansion of online species occurrence databases, and trends over time. For example, preliminary results on a subset of the papers indicate that the most common uses of online species occurrence databases have been: (a) to determine trends in species richness or distribution; (b) to describe a new database; and (c) to assist in developing species checklists or taxonomic studies. Studies addressing plants have generally been more prevalent than those concerning both vertebrates and invertebrates. However, while the number of plant and vertebrate studies have remained relatively constant in recent years, invertebrate studies are increasing.  We also address the importance of both proper citation of databases and use of approaches to improve data quality issues involving errors and biases. The most common aspects of data quality addressed were to check for currently valid names, spatial errors, and to exclude certain unsuitable records. Finally, we identify more integrative studies that incorporate multiple data types, and determine whether these uses are enabled by collaborations. Overall, our presentation demonstrates initial trend results for over 100 specific tags associated with 13 topics of interest, and network analyses of authors and institutions for relevant papers. We also outline the downstream utility of our dense tagging approach for understanding domain-wide trends, and the potential for developing machine-learning approaches to more efficiently characterize certain aspects of published research

    Research applications of primary biodiversity databases in the digital age.

    No full text
    Our world is in the midst of unprecedented change-climate shifts and sustained, widespread habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction events. At the same time, new approaches to publishing and integrating previously disconnected data resources promise to help provide the evidence needed for more efficient and effective conservation and management. Stakeholders have invested considerable resources to contribute to online databases of species occurrences. However, estimates suggest that only 10% of biocollections are available in digital form. The biocollections community must therefore continue to promote digitization efforts, which in part requires demonstrating compelling applications of the data. Our overarching goal is therefore to determine trends in use of mobilized species occurrence data since 2010, as online systems have grown and now provide over one billion records. To do this, we characterized 501 papers that use openly accessible biodiversity databases. Our standardized tagging protocol was based on key topics of interest, including: database(s) used, taxa addressed, general uses of data, other data types linked to species occurrence data, and data quality issues addressed. We found that the most common uses of online biodiversity databases have been to estimate species distribution and richness, to outline data compilation and publication, and to assist in developing species checklists or describing new species. Only 69% of papers in our dataset addressed one or more aspects of data quality, which is low considering common errors and biases known to exist in opportunistic datasets. Globally, we find that biodiversity databases are still in the initial stages of data compilation. Novel and integrative applications are restricted to certain taxonomic groups and regions with higher numbers of quality records. Continued data digitization, publication, enhancement, and quality control efforts are necessary to make biodiversity science more efficient and relevant in our fast-changing environment

    Humans in the loop: Community science and machine learning synergies for overcoming herbarium digitization bottlenecks

    No full text
    Abstract Premise Among the slowest steps in the digitization of natural history collections is converting imaged labels into digital text. We present here a working solution to overcome this long‐recognized efficiency bottleneck that leverages synergies between community science efforts and machine learning approaches. Methods We present two new semi‐automated services. The first detects and classifies typewritten, handwritten, or mixed labels from herbarium sheets. The second uses a workflow tuned for specimen labels to label text using optical character recognition (OCR). The label finder and classifier was built via humans‐in‐the‐loop processes that utilize the community science Notes from Nature platform to develop training and validation data sets to feed into a machine learning pipeline. Results Our results showcase a >93% success rate for finding and classifying main labels. The OCR pipeline optimizes pre‐processing, multiple OCR engines, and post‐processing steps, including an alignment approach borrowed from molecular systematics. This pipeline yields >4‐fold reductions in errors compared to off‐the‐shelf open‐source solutions. The OCR workflow also allows human validation using a custom Notes from Nature tool. Discussion Our work showcases a usable set of tools for herbarium digitization including a custom‐built web application that is freely accessible. Further work to better integrate these services into existing toolkits can support broad community use
    corecore