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Abstract

Our world is in the midst of unprecedented change—climate shifts and sustained, wide-

spread habitat degradation have led to dramatic declines in biodiversity rivaling historical

extinction events. At the same time, new approaches to publishing and integrating previ-

ously disconnected data resources promise to help provide the evidence needed for more

efficient and effective conservation and management. Stakeholders have invested consid-

erable resources to contribute to online databases of species occurrences. However,

estimates suggest that only 10% of biocollections are available in digital form. The biocollec-

tions community must therefore continue to promote digitization efforts, which in part

requires demonstrating compelling applications of the data. Our overarching goal is there-

fore to determine trends in use of mobilized species occurrence data since 2010, as online

systems have grown and now provide over one billion records. To do this, we characterized

501 papers that use openly accessible biodiversity databases. Our standardized tagging

protocol was based on key topics of interest, including: database(s) used, taxa addressed,

general uses of data, other data types linked to species occurrence data, and data quality

issues addressed. We found that the most common uses of online biodiversity databases

have been to estimate species distribution and richness, to outline data compilation and

publication, and to assist in developing species checklists or describing new species. Only

69% of papers in our dataset addressed one or more aspects of data quality, which is low

considering common errors and biases known to exist in opportunistic datasets. Globally,

we find that biodiversity databases are still in the initial stages of data compilation. Novel

and integrative applications are restricted to certain taxonomic groups and regions with

higher numbers of quality records. Continued data digitization, publication, enhancement,

and quality control efforts are necessary to make biodiversity science more efficient and rel-

evant in our fast-changing environment.
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Introduction

Online databases with detailed information on organism occurrences collectively contain well

over one billion records, and the numbers continue to grow. The digitization of natural history

specimens [1,2] and development of online platforms for citizen science [3] have driven a

steady accumulation of species occurrence records over the past decade. Each data point pro-

vides details on the taxonomic identification, date collected or observed, location, and name of

the collector or observer for an organism. Applications of these primary biodiversity data are

varied—such data have historically helped determine harmful effects of pesticides, document

spread of infectious disease and invasive species, monitor environmental change, and much

more [4–9]. The overall goal of this paper is to determine how researchers use open-access

data in published work, focusing on the past decade, when growth of online biodiversity data-

bases has been most rapid. As one illustration of that growth, the Global Biodiversity Informa-

tion Facility (GBIF) has grown from provisioning just over 200 million records in 2010 to over

1.08 billion records today, a greater than fivefold increase [10].

Museums and funding agencies have invested considerable resources to digitize informa-

tion from natural history specimens, make their data openly accessible [11,12], and sustain

platforms to provide access to those data. Such efforts unlock previously inaccessible data and

expand their availability to researchers around the world. However, the task of digitizing

highly diverse groups, such as insects, has been particularly difficult. Estimates suggest that

only 10% of biocollections worldwide are available in digital form [13,14], and it would take

many decades to completely digitize estimated holdings at current rates [15]. While efforts

towards workflow optimization will undoubtedly improve efficiency in certain areas [12,16–

19], it is critical that the biocollections community prioritize efforts; we must advocate for con-

tinued digitization through production of innovative data products, tools, interdisciplinary

collaborations, and by highlighting research that requires primary biodiversity data [3,20–22].

The greatest returns on digitization investments will result from expanded use of collections

data and by linking a wide array of biotic and abiotic data [1,11]. Linked data environments

are in high demand [23,24], are growing rapidly, and provide the greatest potential for data

discovery and use [1].

The biggest obstacle for biodiversity data users is obtaining records of sufficient quantity

and quality for the region and taxonomic group of interest [24,25]. Many taxa and regions are

still highly under-sampled or completely unrepresented (e.g. rare taxa, regions that are difficult

to access) in online databases [26–28], particularly for less known and highly diverse inverte-

brates [29,30]. Many records are also prone to missing important information or information

loss over time, particularly the absence of geographic coordinates and associated uncertainty

estimates [31]. When data are available, researchers must check for common errors and biases

known to occur in opportunistic datasets that are often assembled over long time periods (e.g.

[32])—a task that is labor-intensive [33]. Species identity and locality are the most error-prone

aspects of collection information [7]. Estimates for rates of collection misidentification range

from 5–60%, depending on the taxonomic group [11,34,35]. But if specimens exist, this infor-

mation can be verified or corrected by taxonomic experts. Specimen images, while not always

useful for diagnosis, can often help—particularly when they meet the criteria for taxonomic-

grade imaging. Even with correct identification, names in species occurrence repositories may

still be incorrect and need validation [36]. For many broad-scale studies, erroneous records

primarily lead to overestimation of species richness in areas outside centers of diversity [33].

Geographic errors (or missing information) may be more readily corrected and associated

with appropriate uncertainty estimates using standardized methods [31,37] and online tools

(i.e. GEOLocate, www.geo-locate.org). Digitization of species occurrence records allows
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researchers to explore the data relatively quickly and identify outliers. Further, data services

are becoming more sophisticated in automatically addressing some data quality issues [38,39].

However, it is possible that many studies simply use available data and may not appropriately

evaluate data quality.

Sources of potential biases in opportunistic occurrence data have also been well-docu-

mented in previous work and generally include variation in collection effort and taxonomic,

spatial, and temporal biases [4,40–45]. Some examples of variables contributing to bias include

socioeconomic factors [44,45], the exclusion of common species over rare and flashy ones

[46–48], the selection of large and attractive specimens [49], seasonal bias [50], problematic

distinction between living and dead-collected specimens and associated post-mortem trans-

portation [51,52], and discarding worn specimens, which results in phenological bias or elimi-

nation of specimens with signs of disease [8]. Traditional methods for dealing with these issues

may include subsampling, data aggregation, and additional surveys [7]. Effects of bias can be

reduced for certain studies with higher numbers of records, by combining information from

different institutions, and including observation records to supplement specimen data [8].

Newer statistical and modeling approaches to deal with biases in biodiversity data have also

been developed [43,48,53,54]. However, it is unclear how often studies actually address issues

of error and bias when using opportunistic records.

While several previous studies have reviewed uses of natural history collections data

[4,6,8,55], and one study has analyzed field-specific usage for the GBIF index [56], to our

knowledge no other study has quantitatively reviewed trends in how species occurrence data-

bases are utilized in published research. Our overarching goal in this study is to determine

how such usage has developed since 2010, during a time of unprecedented growth of online

data resources. We also determine uses with the highest number of citations, how online

occurrence data are linked to other data types, and if/how data quality is addressed. Specifi-

cally, we address the following questions: What primary biodiversity databases have been cited

in published research, and which databases have been cited most often? Is the biodiversity

research community citing databases appropriately, and are the cited databases currently

accessible online? What are the most common uses, general taxa addressed, and data linkages,

and how have they changed over time? What uses have the highest impact, as measured

through the mean number of citations per year? Are certain uses applied more often for

plants/invertebrates/ vertebrates? Are links to specific data types associated more often with

particular uses? How often are major data quality issues addressed? What data quality issues

tend to be addressed for the top uses?

Literature search and characterization

We searched for papers that use online and openly accessible primary occurrence records or

add data to an online database. Google Scholar (GS) provides full-text indexing, which was

important for identifying data sources that often appear buried in the methods section of a

paper. Our search was therefore restricted to GS and to the time period of 2010 through the

date of the search (April 2017; note when looking at trends over time we remove 2017, as the

year was not complete in our dataset). All authors discussed and agreed upon representative

search terms, which were relatively broad to capture a variety of databases hosting primary

occurrence records. The terms included: “species occurrence” database (8,800 results), “natural
history collection” database (634 results), herbarium database (16,500 results), “biodiversity
database” (3,350 results), “primary biodiversity data” database (483 results), “museum collec-
tion” database (4,480 results), “digital accessible information” database (10 results), and “digital
accessible knowledge” database (52 results)–note that quotations are used as part of the search
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terms where specific phrases are needed in whole. We downloaded the first 500 records (or all

if there were fewer than 500 results), which are presumably the most relevant search returns,

for each search term into a Zotero reference management database [57]. We obtained citation

numbers for each paper from the GS search results at the time of downloading records (April

2017) [58]. After removing duplicates across search terms, the final database included 2,460

papers. We then randomly sorted papers into four separate sets of around 500 to allow sub-

sampling of the dataset.

For a study to be relevant in this assessment, there must be an indication that the database

used is publicly accessible online in a searchable database of biodiversity records. The data-

bases used may include specimen and/or observation-based records from biodiversity data

aggregators, online natural history collection databases, websites devoted to capturing citizen

science observation records, or newly compiled data that are made available in online data-

bases. Studies were not relevant if they exclusively used data that are not available online or

from systematic surveys, government monitoring programs, or field data collected explicitly

for the study in question. However, papers are relevant if they use these other types of occur-

rence data in addition to online databases of primary occurrence records (see section on data

linkages, below), or if they compile these types of occurrence records and deposit them into an

existing online biodiversity data aggregator (e.g. GBIF). Twenty-six percent (n = 501; see S1

File for citation information) of the papers in the final evaluated dataset (n = 1,934) were rele-

vant according to these criteria. The full dataset is published and openly accessible [58].

Three of the authors with specialized knowledge of the field (J. Damerow, L. Brenskelle,

and R. Guralnick) characterized relevant papers for the first 1000 papers using a standardized

tagging protocol based on 14 key topics of interest with over 100 total tags. We developed a list

of potential tags and descriptions for each topic; a full list with descriptions of tags is provided

in S1 Table. J. Damerow subsequently checked each tagged paper from the first 1,000 papers to

maintain consistency and became the sole tagger for an additional 934 papers. This process

allowed the development of a more standardized tagging protocol. The database of tagged

papers was then downloaded from Zotero for further data checking and analysis. We used

OpenRefine (www.openrefine.org), an open source tool for data cleaning that aggregates simi-

lar records for efficient clean-up, to standardize tags from the final dataset.

Trends in uses of primary biodiversity data

We characterize a variety of ways in which researchers are using species occurrence records by

assessing the prevalence of individual tags corresponding to topics of interest. We identify the

most commonly cited databases and most-studied taxa, number of taxa addressed, most com-

mon research uses, the types of data most often linked to species occurrence records, and

aspects of data quality addressed in these papers. In addition, we determine prevalence of these

tags over time to assess positive or negative trends. Some expected trends include the

following:

• Data uses requiring large numbers of dispersed records, such as species distribution models

and biodiversity studies, will be the most common applications of online databases.

• Data papers and those describing a new database will increase over time as new venues have

grown supporting such publications.

• Uses involving other online data types (i.e. barcoding, citizen science, species interactions)

that can be linked to species occurrence records will increase.
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• The number of species addressed will increase over time as more data become available

online and projects leverage broader-scale data.

• The most common data quality issues addressed will be checks for correct taxonomic

nomenclature and georeferences, which can often be assessed with readily-available online

resources.

Primary biodiversity databases and accessibility of data

We identify 347 primary biodiversity databases used in papers from our dataset (S2 Table), the

URL for each database, and the scale (institution, regional, global, taxa) and regional or taxo-

nomic focus (e.g. Australia, fish) of each database. We then evaluate citation information pro-

vided in each paper, and assess whether the data are currently available online or not by

visiting associated URLs. The most cited databases include: the Global Biodiversity Informa-

tion Facility (GBIF [10]), Barcode of Life Data Systems that includes species occurrence and

genetic data (BOLDSystems [59, 60]), SpeciesLink [61], Ocean Biogeographic Information

System (OBIS [62]), Australasian Virtual Herbarium (AVH [63]), Tropicos [64], FishBase

[65,66], Fishes of Texas [67], and CONABIO REMIB (Table 1, [68]); note that we did not find

significant changes over the study time period (2010–2017) in usage of individual databases,

likely due to insufficient data points per year.

Our dataset includes 165 papers that involve compiling and publishing data online (117

data papers and 60 papers that describe a new database, some of these papers overlap). Previ-

ous work has outlined best practices for publication of biodiversity data [69–74] and scientific

data more generally (e.g. [75]). However data are published, primary biodiversity data should

also be integrated into an aggregate system with similar data, such as GBIF, OBIS, VertNet,

iDigBio, or BOLDSystems [74].

Many researchers do not sufficiently cite databases used [76,77], and links to many data-

bases become invalid over time [78–80]. We found that 34 percent of papers (n = 170) had

insufficient citation information for one or more databases; this meant that there was either no

URL provided to access the database, or the URL was invalid. Twenty-six percent of databases

(n = 90) cited in one or more papers from our dataset were totally inaccessible at the time of

this assessment. In some cases, researchers appropriately cited a database that is no longer in

operation or has subsequently been integrated into an aggregate system. As a result of insuffi-

cient data citation practices and lack of data preservation, data are either completely lost or it

is impossible to reproduce the dataset used and results. Study reproducibility, strongly linked

to data persistence [78], is a key principle in the scientific process and a growing concern

across scientific disciplines (e.g. [81]). Researchers who have compiled data from multiple

Table 1. Top ten most used biodiversity databases (see S2 Table for a comprehensive list).

Database Name Number of Papers Citing

GBIF 155

BOLDSystems 27

SpeciesLink 21

OBIS 20

Australia’s Virtual Herbarium 19

Tropicos 16

FishBase 14

Fishes of Texas 13

CONABIO 11

https://doi.org/10.1371/journal.pone.0215794.t001
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sources for a particular analysis can better ensure that these data are accessible and get credit

for the work involved in integrating datasets by formally publishing data with descriptive

metadata and obtain a persistent DOI [75]. The prevalence of inaccessible databases and

incomplete database citations indicates that many biodiversity researchers lack the resources

to manage and preserve data for the long term and/or are unaware of best practices.

Guidance and infrastructure for citing online data sources have fairly recently emerged and

are still evolving [76,82]. One major problem is that many papers using biodiversity data have

obtained data from an aggregator, such as GBIF, which has potentially drawn from thousands

of original data sources. Up to this point, researchers have most often cited GBIF in this case

(usually in-text, not in the reference section) and neglect to credit original data sources [77].

Even for those who attempt to cite sources, many journals do not allow large numbers of cita-

tions in the reference section, and the only solution is to cite sources in a supplement or appen-

dix which does not provide citation credit [77]. Data contributors who have submitted data to

aggregators are not getting credit for the significant work spent on data management, stan-

dardization, and quality control. Ideally, data citations should include DOIs for datasets if they

exist and citations of online databases both in text and in the reference section [76,77,83].

Research uses

A primary goal for this work was to characterize research uses of the study databases. An initial

list of use tags was developed based on usage outlined in [24], which surveyed needs of primary

biodiversity data users. We subsequently split up certain aggregated topics and revised and

added use categories based on important subject areas that arose during the tagging process.

We ended with 31 potential research use tags, as listed and described in S1 Table. Most papers

had multiple use tags assigned (mean = 2.5, max = 7). We then determined the average num-

ber of citations for papers involving each data use. Number of citations was extracted from the

original web snapshots of the Google Scholar searches for each term in April 2017, and repre-

sent citations at that time [58].

The top research uses for online species occurrence databases—from our dataset of 501 rel-

evant papers—were studies on species distribution (n = 175), diversity/population studies that

usually assess species richness (n = 122), dataset description (i.e. data papers, n = 117), taxon-

omy (n = 95), conservation (n = 68), data quality (n = 68), invasive species (n = 61), and that

described a new database (n = 60, Fig 1); see S1 Table for full descriptions of each category of

research use. The prevalence of most uses did not change from 2010–2016, with the exception

of data papers and taxonomy-related studies, which both increased (Fig 2); taxonomy studies

usually involved developing regional species checklists. In the aforementioned survey assess-

ment of user needs for primary biodiversity data [23,24], these same categories of use were

among the top ways in which people listed that they use primary biodiversity data. Some

exceptions were that a relatively large number of survey respondents claimed that they use bio-

diversity data for ecology/evolution studies, natural resources management, life history/phe-

nology studies, and education/outreach, but relatively few published studies used occurrence

data for these purposes in our dataset. It is possible that people use data for these purposes, but

do not necessarily publish papers on the topic or may not cite databases for this work [84].

Some of the top research uses involved compiling and processing data, as reflected in the

high numbers of data papers, papers describing new databases, and papers addressing data

quality and data gaps (all of which were among the top ten uses, Fig 1). The biodiversity com-

munity is still in an active stage of compiling existing biodiversity data and dealing with issues

of data quality. Data papers and papers describing a new database have increased over time

(Fig 2), which is likely to be the result of the introduction and expansion of many data journals
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[69,85], online platforms for reporting species occurrence observations such as iNaturalist [86]

and eBird [3,87], and efforts over the past decade to digitize specimen records [1,13]. More

journals accept papers or even focus on publishing high-quality data and recognize this as an

important part of the scientific process [74,84,88,89].

Papers with the highest mean number of citations per year involved more applied studies in

disease ecology (mean = 18, SD = 33), public health (mean = 8, SD = 7), documenting extinc-

tions (mean = 7, SD = 7), developing a new analytical method to deal with species occurrence

data (mean = 7, SD = 8), and citizen science (mean = 7, SD = 6; Table 2). Papers with the high-

est maximum number of citations per year focused on disease ecology, species diversity, and

publishing data (each with a maximum of 97 citations/year; Table 2); we did not account for

self-citation here.

Taxa addressed

The third major topic for this work was to determine how often different taxonomic groups

are represented in papers utilizing biodiversity databases. Taxa in relevant papers were coarsely

characterized as plants, vertebrates, invertebrates, fungi, paleo, and/or all taxa; note that we

addressed only macro-organisms because they are the focus of non-sequence-based species

occurrence databases. These general taxonomic categories also correspond to common divi-

sions for the organization of natural history collections and associated databases. Many papers

include more than one taxon, and we use an “all taxa” categorization for studies that use all

Fig 1. Frequency of major research uses in published papers (n = 501) that obtain data from species occurrence records

available in online databases. See S1 Table for detailed descriptions of each research type.

https://doi.org/10.1371/journal.pone.0215794.g001

Research applications of primary biodiversity databases in the digital age

PLOS ONE | https://doi.org/10.1371/journal.pone.0215794 September 11, 2019 7 / 26

https://doi.org/10.1371/journal.pone.0215794.g001
https://doi.org/10.1371/journal.pone.0215794


available data within the species occurrence database(s), such as GBIF. We further categorized

taxa addressed in each paper by adding one or more tag(s) for more specific taxonomic classi-

fications (e.g. butterflies, Danaus plexippus). While an in-depth assessment of specific taxa is

beyond the scope of the current paper, we did tag the number of taxa addressed in each paper,

if that number was apparent. Our goals here were to characterize the most commonly studied

taxonomic groups, the number of taxa addressed, and to determine uses associated with the

three most common organismal groupings (plants, vertebrates, and invertebrates).

The most commonly studied taxa were plants (n = 232 papers, 46%), followed by inverte-

brates (n = 125, 25%), vertebrates (n = 124, 25%), “all taxa” (n = 40, 8%), fungi (n = 16, 3%),

and paleontological specimens (n = 14, 3%; Table 3). However, the gap between number of

papers addressing plants, vertebrates, and invertebrates closed in recent years (2014–2016, Fig

3). The overall prevalence of plants in this work corroborated a recent bibliometric study,

which found that 56% of biodiversity-related papers addressed plants, compared to 29% for

vertebrates and 23% for invertebrates [90]. The prevalence of plants in the field of biodiversity

research may be the result of several factors. Plants are far more diverse than vertebrates

(known to be relatively well-studied) and therefore generally require more taxonomic work.

Herbarium sheets have also been the easiest historically to digitize, as sheets can be scanned

and imaged using more automated processes [11,16]. The current prevalence of plants may

also partially be the result of a strong history of plant research in Europe; this tendency is

known as the “Matthew principle” whereby research concentrates on already well-studied

Fig 2. Change in the number of papers from 2010–2016 involving the top six research applications for online species occurrence databases.

https://doi.org/10.1371/journal.pone.0215794.g002
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subjects [90]. The total number of invertebrate studies was equivalent to the total number of

vertebrate studies (Fig 3). However, invertebrates are much more diverse in terms of species

Table 2. Summary statistics for the number of citations per year for each use of primary biodiversity data. Note that not all papers had citation data available.

Data Use N mean sd min max

Disease Ecology 8 18 33 2 97

Public Health 9 8 7 0 22

Extinction 6 8 7 1 17

Analytical Method 26 7 8 1 34

Citizen Science 7 7 6 1 17

Species Distribution 152 6 10 0 97

Climate 46 6 6 0 32

Niche 24 6 5 0 20

Data Quality 59 6 8 0 37

Diversity/Population 108 5 10 0 97

Data Paper 94 5 11 0 97

Other(Paleontological) 3 5 5 0 10

Other(Behavior) 1 5 NA 5 5

Data Gap 56 5 6 0 28

Agriculture 10 5 4 1 13

Invasive Species 55 5 5 0 32

Conservation 61 5 6 0 22

Endemism 23 5 5 0 20

Evolution 17 5 3 0 12

Barcoding 22 5 4 0 16

Biogeography 41 5 4 0 16

New Database 50 4 6 0 29

Species Occurrence 26 4 4 0 22

Interactions 7 3 3 1 9

Natural Resources 24 3 3 0 12

Environmental Impact 18 3 2 0 7

Other(Movement) 3 3 2 2 5

Life History 10 3 2 1 8

Taxonomy 72 2 3 0 16

Other(Ethnobotany) 1 2 NA 2 2

Education 5 2 2 0 5

Social 14 2 1 0 5

Other(Reference) 1 1 NA 1 1

https://doi.org/10.1371/journal.pone.0215794.t002

Table 3. Total number of papers from dataset (501) addressing the major taxonomic groups and paleontological

specimens.

Taxa Number of papers

Plants 232

Invertebrates 125

Vertebrates 124

All 40

Fungi 16

Paleo 14

https://doi.org/10.1371/journal.pone.0215794.t003
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Fig 3. Number of papers addressing the major taxonomic groups and paleontological records over time.

https://doi.org/10.1371/journal.pone.0215794.g003

Fig 4. Percentage of papers involving each of the major taxonomic groups (invertebrates, plants, and vertebrates)

that use species occurrence databases for certain research applications: Species distribution, diversity/population,

data paper, taxonomy, invasive species, biogeography, climate change, and barcoding.

https://doi.org/10.1371/journal.pone.0215794.g004
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(estimated at 6,755,830 species, see [91]), and vertebrates are unquestionably more studied on

a per-species basis. The numbers of papers addressing vertebrates and invertebrates has

increased slightly and were roughly equivalent over time (Fig 3). The frequency of papers

addressing “all taxa” from online databases has not changed significantly over time (Fig 3).

The most common data uses associated with the major taxonomic groups reflect the general

maturity of data products associated with the respective group. Over 50% of vertebrate studies

involved investigating species distribution (Fig 4); vertebrate data are generally more suitable

for distribution studies because vertebrates are less diverse, many collections are completely

digitized, and data for individual species are likely to contain sufficient numbers of records.

Birds in particular have relatively good data available, in part because of online citizen science

efforts and associated open data platforms, such as eBird [3]. While distribution studies were

still the most common application across groups, significantly smaller percentages of plant

(33%) and invertebrate (41%) studies dealt with species distribution. Plants and invertebrates

are much more diverse, and the average species in these groups are less likely to have data of

sufficient quantity and quality to estimate species distribution; however, growth in resources,

especially for plants, is closing the gap. Data on insect distributions are less complete (or non-

existent) for most species and hence may not be suitable for distribution and conservation

studies [92,93].

A higher percentage of data papers, taxonomy, and barcoding papers involved invertebrates

(Fig 4), reflecting in part the high taxonomic diversity for this group and need for more data.

There are around 60,000 species of vertebrates, an estimated 400,000 plants, and an estimated

5–6 million species of insects; about one million insect species are currently described, which

highlights the need for more taxonomic work in this group [20,94]. Other invertebrate phyla,

such as Mollusca, are highly diverse as well (estimated 70,000–76,000 living species) [95]. Digi-

tizing efforts for invertebrates have been particularly challenging, because many clades are so

diverse, collections have much larger numbers of specimens, and the typically small specimens

are difficult to digitize [96]. Automating digitization of such specimens, especially pinned

insects and fluid-preserved invertebrates, faces significant obstacles [12,18,97–100].

The use of species occurrence data for conservation followed predicted trends. Vertebrate

studies were more likely to address conservation; 23% of papers using vertebrate biodiversity

records involved conservation, as compared to 14% of papers using plant records and 12% of

papers using invertebrate records (Fig 4). Twenty percent of vertebrate species are currently

classified as threatened, and that number is increasing [101]. While vertebrates have more

data, they are by no means complete [102]; less-studied vertebrates (i.e. fish) also have much

lower amounts of digitized data, as compared to birds [103]. Large species often receive more

research and conservation funding, and very few conservation assessments exist for inverte-

brate taxa; most insect species are classified as “data deficient” (e.g. [104]). There is much need

and potential for using primary biodiversity data to help determine conservation status of

insects—perhaps starting with taxa known to be biological indicators of ecosystem health (e.g.

[105,106]) and insects that provide important ecosystem services (e.g. [107]). However, identi-

fying decline requires large numbers of records along with systematically collected surveys

over time, which often do not exist for rare and potentially threatened species [108]. Opportu-

nistic species occurrence records may therefore be best used to identify data gaps and promis-

ing areas for resurveys or standardized long-term monitoring studies when dealing with

species decline [48].

Contrary to expectations, we found that studies addressing “all taxa” remained fairly consis-

tent over time (Fig 3), and the maximum number of taxa addressed did not increase (Fig 5).

However, this may be an effect of small sample sizes. Only four papers involved numbers of

species in the hundreds of thousands over the period of 2010–2017 (Table 4). Most papers
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focused on numbers of species in the single or double digits (Table 4). We found that the top

data uses for papers that addressed “all taxa” involved data compilation and data quality (data

quality assessments, data gap studies, data papers, and reporting on new databases, respec-

tively). We argue that the scale of data that needs processing, along with issues of often sparse

data, data obsolescence [109], and data of uncertain quality, make large-scale analyses chal-

lenging for anyone but a small group of data sciences-savvy end users. Additionally, effective

large-scale assessments are often impossible without significant investments and active collab-

oration across study domains (e.g. taxonomy, ecology, biodiversity informatics) and geograph-

ical regions [110].

Links to other data types

We determine how studies link primary biodiversity data to other data types by characterizing

the variety of data compiled and used in each study (see S1 Table for full descriptions of 28

data linkage tags). We searched for information regarding other data types used within the

methods section of each paper. Data link tags fall under four general categories of data types,

including 1.) other types of occurrence data (i.e. data from literature, field surveys, species cat-

alogues, private data); 2.) attributes of species occurrence data (e.g. information about the

holding collections of specimens, species traits, conservation status, genetic data, associated

image(s), species interactions, population data); 3.) environmental data (e.g. climate,

Fig 5. Maximum number of taxa addressed in papers (n = 501) from 2010–2016.

https://doi.org/10.1371/journal.pone.0215794.g005

Table 4. Number of taxa addressed by papers using online species occurrence records.

Number of taxa addressed Number of papers

1–9 113

10–99 106

100–999 82

1,000–9,999 68

10,000–99,999 22

100,000–999,999 4

https://doi.org/10.1371/journal.pone.0215794.t004
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geographic information, habitat, ecoregion, etc.); and 4.) data that can be used to determine

biases or gaps (socioeconomic data, expert knowledge, and accessibility of sites—with the last

usually evaluated through proximity to roads or research institutions). We then determine the

average number of data link tags associated with the six top uses, and the most common data

type associated with each of these top uses.

Data types that were most often used in association with online species occurrence data-

bases (out of 501 relevant papers) included occurrence records from previously published liter-

ature (n = 189), climate (n = 149), occurrence records from surveys (n = 143), collection

information (n = 135), habitat (n = 118), traits (n = 111), and geographic data (e.g. elevation;

n = 106, Fig 6). The only data types that changed over the time period of our dataset, 2010–

2016, were collection, genetic, and phylogenetic data, which all increased (Fig 7). The average

number of data linkages per paper was four (ranging from one to 11).

Table 5 summarizes top data linkages for different key uses. As predicted, climate is often a

critical data type linked to occurrence records, especially for species distribution where it is the

most commonly linked data type, and for diversity/population studies where it is a close sec-

ond. For data papers and taxonomy studies, both collection data and literature data were often

the most common data linkages. Conservation-focused studies most often linked occurrence

records to conservation status, habitat, literature, and climatic data. Data quality studies often

included a variety of data linkages, with little sorting of top linkages, likely representing the

high dimensionality of data quality issues.

The high prevalence of studies compiling occurrence records from other sources indicates a

continued demand for more and continued specimen sampling, and the need for more prog-

ress in getting these data into online databases (i.e. data papers and new database develop-

ment). Three of the top five data types linked to online occurrence records included other

types of occurrence data–literature-based occurrence data, surveys, and specimen data from

natural history collections (n = 189, n = 145, and n = 135 papers used these data types, respec-

tively). Sometimes the compiled data eventually make it into online data aggregators, such as

GBIF, and sometimes they do not. Continued advocacy for data publication will be important

to maximize the potential usability of all biodiversity data.

Environmental data used in conjunction with online biodiversity records are often applied

in studies of species distribution. Specific environmental parameters used to predict distribu-

tion should be informed by expert knowledge of the requirements of a given species. Among

environmental variables, climate data are perhaps the most readily available, relevant for the

distribution of organisms on a global scale, and provide essential information for determining

impacts of climate change on distribution [111,112]. Our data show that climate is indeed the

most common environmental variable used in association with occurrence records (Fig 6; also

documented in [56]). The second and third most common environmental data types used

were geographic and habitat, which usually included GIS layers for elevation and land use

and/or vegetation (see S1 Table). Elevation, land use, and vegetation data are also among the

most readily available environmental data types, and are often relevant for evaluating species

distribution at smaller spatial scales [113]. Despite increasing calls for incorporating relevant

biotic interactions into models, only nine distribution studies incorporated data on interac-

tions (i.e. competitive, consumptive, symbiotic, or pathogenic relationships), and 30 studies

overall involved species interactions. The relatively low prevalence of species interaction infor-

mation in these studies is thought to be primarily due to the large spatial scales usually consid-

ered in distribution models. Biotic interactions are often studied on a smaller scale by

community ecologists, while distribution modeling is often done by macroecologists [114].

Primary species occurrences may provide needed data for studying biotic interactions on a

larger scale, but these data are often not digitized, even if they exist in collections, and
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Fig 6. Number of papers that incorporate other data types to supplement or associate with online species

occurrence records. Data types fall within one of four categories, including 1.) attributes of occurrence information,

2.) data types that may help address bias in the data, 3.) environmental variables, and 4.) other kinds of occurrence

data.

https://doi.org/10.1371/journal.pone.0215794.g006

Fig 7. Data types linked to primary biodiversity data that increased over the period from 2010 through 2016.

These include data needed for taxonomic/phylogenetic studies, namely those from natural history specimens, genetic

data, and phylogenetic data.

https://doi.org/10.1371/journal.pone.0215794.g007
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compiling data of sufficient quantity and quality for a given taxon remains an obstacle due to

lack of automated data capture options for invertebrate collections.

The only data types that have increased over time were specimen collection, genetic, and

phylogenetic data (Fig 7). We expected to see an increase in use of genetic data in particular, as

these data are known to have expanded with the growth of databases, such as the Barcode of

Life Data Systems (BOLDSystems) that links molecular, morphological, and distribution data

[59]; the number of records in BOLDSystems increased from about 0.5 million in 2007 to 1.5

million today [60]. Further, large-scale phylogenetic resources, such as Open Tree of Life [115]

that launched in 2015, have made it easier than ever before to phylogenies with other species

data. The increasingly available collections, genetic, and phylogenetic data are highly relevant

in taxonomy-related studies and data papers, which increased over time (Fig 2).

Both taxonomy and data papers used collection data most frequently in addition to data

already available in online databases. Taxonomy-related uses of online species occurrence

databases sometimes involve describing new species, but more commonly involve compilation

of regional species checklists. The most traditional use of collections data is for taxonomy, so it

is not surprising that over 50% of taxonomy papers also involve collections and literature data.

The relatively high percentage of data papers that involve collections data (44%) reflects recent

digitization efforts for natural history collections [1,9,13,116].

Data quality

We characterize papers that address major data quality issues known to be associated with spe-

cies occurrence data, including both common errors and biases. Data quality tags involve

Table 5. Percentage of papers that associate online occurrence data with other data types—Separated by the six top uses of these databases. Nine data types with the

lowest percentages were removed from table. The top data type for each research use is bolded, and percentage values above 10% are highlighted yellow (10–29%), orange

(30–49%), and red (>50%).

Data Type Species Distribution Diversity/ Population Data Paper Taxonomy Conservation Data Quality

Climate 58 37 7 2 32 26

Literature 41 40 29 52 40 26

Geographic 37 31 11 2 34 21

Surveys 36 36 29 32 32 13

Habitat 30 34 18 11 43 21

Collection 28 23 44 53 18 22

Traits 25 25 15 26 25 13

Conservation 20 29 9 15 75 15

Expert 15 7 9 3 22 7

Private 15 13 8 5 10 7

Range 14 12 6 5 22 13

Catalogues 11 18 20 25 19 22

Hydrography 11 12 3 2 16 1

Soil 11 11 2 0 10 3

Ecoregion 10 24 8 6 19 7

Genetic 10 13 24 26 6 6

Social 10 7 4 1 13 7

Interaction 9 5 4 8 6 0

Paleo Climate 7 5 1 0 1 0

Image 5 4 21 23 1 7

Phylogenetic 5 11 12 16 1 4

https://doi.org/10.1371/journal.pone.0215794.t005
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improving data quality for a particular purpose addressed in the paper. Taxonomic nomencla-

ture, species identification, spatial, and temporal data quality tags represent adjustments to the

dataset used in a study that at least partially corrects the associated errors (see S1 Table). We

also characterize studies that exclude certain inappropriate records, remove records with high

georeferencing uncertainty, remove outliers, and those that address collection effort—see S1

Table. In addition to errors, some studies address specific biases known to be a problem in

opportunistic datasets, including taxonomic, spatial, temporal, and environmental biases.

Finally, we have a “detection” tag to represent use of statistical methods to estimate detection

probability [53]. We assess the average number of quality tags associated with papers overall,

and the most common data quality issues addressed within each of the top uses.

Overall, 69% of studies from our dataset that used online species occurrence records

addressed one or more aspects of data quality. The biggest data quality concerns cited by users

of primary biodiversity data in a recent survey [24] were georeference quality and taxonomic

quality—we found that studies addressed these issues in 24% (spatial error in georeferences),

39% (taxonomic nomenclature), and 19% (species identifications) of published papers from

our dataset (Table 6). Two data quality checks increased from 2010 to 2016: correcting taxo-

nomic nomenclature and specimen identification (Fig 8), reflecting also the increase in taxon-

omy-related and data papers.

Spatial errors and taxonomic nomenclature are generally the easiest data quality errors to

correct. Non-experts can check for spatial outliers or incorrect georeferences using standard-

ized methods and online georeferencing tools [37,117]. Depending on data needs, one may

also use existing uncertainty radii associated with georeferenced coordinates to select appro-

priate records for a study. However, most records in GBIF, for example, still do not have

uncertainty radii; in a recent assessment of GBIF records for Odonata, Ephemeroptera, Ple-

coptera, and Trichoptera from the U.S.A., we found that the percentage of records with uncer-

tainty radii associated with them was only 7–36% for these aquatic insect groups (as of April

2017). Of the 6.2 million catalogued molluscan lots in U.S. and Canadian collections, 4.5 mil-

lion have undergone some form of data digitization. Of these, about 1.1 million (24%) of digi-

tized records have been georeferenced, which represents 18% of all catalogued lots [49].

However, only a subset of these have uncertainty radii associated. Many digitization efforts for

insects in particular have prioritized transcribing and publishing specimen label information

and have not yet begun or completed georeferencing.

Table 6. Papers from dataset (n = 501) that addressed data quality issues associated with species occurrence

records.

Quality Tag Number of Papers Percentage

Taxonomic 193 39%

Spatial 121 24%

Identification 94 19%

Spatial Bias 59 12%

Exclusion 57 11%

Effort 50 10%

Precision 30 6%

Temporal 18 4%

Outliers 17 3%

Temporal Bias 11 2%

Taxonomic Bias 9 2%

Environmental Bias 6 1%

Detection 4 1%

https://doi.org/10.1371/journal.pone.0215794.t006
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Online taxonomic catalogues and tools to check records against updated catalogues are

available for correcting taxonomic nomenclature [118,119]. However, we still have not reached

the major goal of having online taxonomic data sources that are consistently updated by taxo-

nomic experts for all species, although community-supported resources such as FishBase [65],

WoRMS [120], and the latter’s affiliated databases such as MilliBase [121], and MolluscaBase

[122] are approaching that goal for many taxonomic groups. Other groups may lack online

sources or have sources that are significantly out of date [123]. Unfortunately, the decline in

resources devoted to the field of taxonomy does not bode well for achieving a unified taxo-

nomic backbone usable for resolving all taxonomic issues [124,125]. Given the speed of taxo-

nomic concept changes [126], lack of updated resources is a significant impediment to proper

data integration. The best way for taxonomic experts to help ensure that nomenclature for

their group is current is to engage with the community-supported and specialist-edited taxo-

nomic database projects in their respective fields. The combined data of massive authority file

efforts spanning multiple taxon groups, such as those covered by WoRMS, allow for novel

approaches to data analysis [127].

Correcting species identifications requires taxonomic expertise for many organisms, partic-

ularly high-diversity groups, such as insects. Many users outside of the community of trained

collection scientists may not understand or be interested in taxonomic concepts [1]. Therefore,

despite misidentification being a well-known problem, this issue is less often directly addressed

in papers. For those who are not taxonomic experts, some possible approaches to address mis-

identifications include: choosing taxonomic groups that are relatively easy to identify and less

likely to have identification error, or including only records identified by reliable experts. For

broad-scale biodiversity studies it may be appropriate to check occurrence locations against

known ranges (where those exist); one may then identify outliers in the data where species are

found in regions where they are not known to occur. Such efforts require both taxonomic and

geospatial skills, although some automation may be possible [128].

Fig 8. Number of papers that address identification errors and/or update taxonomic nomenclature from 2010–

2016; note that these were the only two data quality issues that changed significantly over time.

https://doi.org/10.1371/journal.pone.0215794.g008
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Biases that result from variation in collection effort across space, time, taxonomic groups,

and environments are also well-known problems in opportunistic biodiversity records

[32,41,42,92]. The most commonly addressed bias in our dataset was spatial (addressed in 12%

of papers, Table 7), as it is important for accurate species distribution modeling, and some

methods to deal with spatial bias have been developed [41]. Other forms of bias were rarely

addressed in only 1–2% of papers and include temporal bias (usually seasonal bias for certain

times of year, or bias for certain years where specialists are active), taxonomic bias (e.g. prefer-

ence for endangered species, charismatic taxa, avoiding common species or pests [47]), and

environmental bias (e.g. preference for collecting in certain habitats or climates [41]).

Data quality issues are often dictated by the specific use. The most commonly checked data

quality issues for papers involving species distribution were spatial errors (28% of distribution

studies), taxonomic nomenclature (27%), spatial bias (24%), specimen identification (21%),

and excluding inappropriate records (19%; Table 6). Taxonomic nomenclature was the most

commonly checked data quality issue for all other top uses, ranging from 40% of papers (con-

servation and data quality uses) to 56% (taxonomy). In general, taxonomy papers only check

issues related to nomenclature and identification. Data quality papers tend to focus evenly on

the two most easily corrected issues (spatial and taxonomic, each 40% of data quality papers),

followed by accounting for spatial bias (29% of data quality papers), effort (25%), and correct-

ing specimen identification (18%). Diversity/population and conservation papers both also

address taxonomic nomenclature and spatial errors most frequently (Table 7).

Automated data quality annotations are growing within the major online data aggregators

(e.g. GBIF, iDigBio), but there is still much room to improve upon methods to easily tag data

and highlight errors, biases, and uncertainty levels in the data. We need better methods to doc-

ument confidence in data at a record and dataset level [23]. When data quality is addressed, it

is usually done manually, and workflows are difficult to document, extend, and share. More

recently, programs to automate and document data cleaning workflows have been developed,

such as Kurator, a Kepler data curation package [38], but are not yet widely used due to the

highly technical user interface, and have uncertain future support. Biodiversity databases allow

efficient access to data that can expedite work, but care is still needed when using these

resources. Data quality improvements on a large scale will require additional investment in

data enhancements (e.g. collaborative georeferencing using standardized point-radius

method) and quality control (e.g. efficiently identifying records that may need correction or

attention from taxonomic experts).

Conclusions and next steps

1. A high proportion of studies did not sufficiently cite databases, and many databases were

no longer accessible at the time of this study; in most cases it was unclear whether the data

were lost or moved to an aggregator. Continued efforts in data preservation and promoting

best practices in data citation are essential for advancing scientific reproducibility, sustain-

ing data resources, and encouraging publication of high-quality biodiversity data.

2. The increasing number of data papers over time reflects progress in digitization and online

platforms for reporting observations through citizen science, as well as increases in journals

that support data publication. Continued growth of data publications will enhance the effi-

ciency and relevance of the field in addressing biodiversity conservation and environmental

management.

3. Our study corroborated a recent bibliometric analysis of the larger field of biodiversity

research, finding that more studies address plants (46% of studies using biodiversity
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databases) than vertebrates (25%) and invertebrates (25%). The prevalence of plants in

studies that use online biodiversity databases may be due to a strong history of plant diver-

sity work in Europe in particular, and the relative ease with which herbarium records can

be digitized by scanning herbarium sheets.

4. While studies overall were less common for vertebrates than for plants, vertebrates may

generally be more suitable for distribution studies because the group is less diverse, many

collections are completely digitized, there are prolific citizen science communities reporting

bird observations in particular, and data for individual species are more likely to contain

sufficient numbers of records. Conservation studies are also more common for vertebrates,

likely because they are disproportionately represented in threat assessments. In contrast,

highly diverse invertebrates are more likely to be the subject of foundational biodiversity

studies, such as taxonomy, barcoding, and data papers.

5. It is concerning that a relatively large proportion of studies does not explicitly address data

quality—only 69% of studies in our dataset reported addressing one or more aspects of data

quality. Authors who do address data quality are most likely to standardize nomenclature

using online resources or to correct spatial errors. For nearly all uses of these data, there are

errors and biases that can compromise results when using opportunistic records. Improv-

ing upon automated solutions to flag errors, and efficient mechanisms to report and correct

data quality issues is critical in advancing the relevance and broadest use of this type of bio-

diversity data [129].

6. Significant investments in data enhancement and quality control are needed. This may be

one limiting factor holding back studies that utilize all data currently held within biodiver-

sity databases and studies that address very large numbers of taxa within clades. We found

only four studies since 2010 that address hundreds of thousands of taxa, and most papers

address numbers of taxa in the single or double digits. Large-scale improvements in data

availability and fitness will require interdisciplinary effort and collaboration.

7. To limit the scope of the present paper, we focused efforts here on data citation, research

uses, general taxa addressed, data linkages, and data quality issues addressed. However, we

are also utilizing the dataset of tagged papers to address additional questions regarding

Table 7. Percentage of papers that check aspects of data quality for online occurrence data—Separated by the six top uses of these databases. Nine data types with

the lowest percentages were removed from table. The top data type for each research use is bolded, and percentage values above 10% are highlighted yellow (10–29%),

orange (30–49%), and red (>50%).

Data Quality Check Species Distribution Diversity/ Population Data Paper Taxonomy Conservation Data Quality

Spatial 28 27 26 9 29 40

Taxonomic 27 48 48 56 40 40

Spatial Bias 24 15 4 2 16 29

Identification 21 14 38 40 9 18

Exclusion 19 20 5 1 15 9

Effort 14 19 9 2 12 25

Precision 9 7 3 0 12 15

Outliers 5 1 1 1 3 10

Temporal Bias 4 3 2 1 1 4

Temporal 3 2 5 1 1 13

Environmental Bias 2 1 1 1 0 6

Taxonomic Bias 2 4 2 0 1 4

Detection 1 0 0 0 1 1

https://doi.org/10.1371/journal.pone.0215794.t007
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author connectedness and collaboration across institutions, countries, and disciplines. Such

next-step efforts will provide additional context about the nature and scope of collabora-

tions and resources that coalesce around digitally accessible primary biodiversity data.
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