147 research outputs found
Recommended from our members
Surface structure, bonding, and dynamics: The universality of zincblende (110) potential energy surfaces
Using a tight-binding, total energy (TBTE) model we examine the hypothesis that the potential energy surfaces (PES) describing the (110) cleavage faces of the tetrahedrally coordinated, zincblende-structure compound semiconductors exhibit a common universal'' form if expressed in terms of suitably scaled parameters. TBTE calculations on both III-V and II-VI compounds reveal a linear scaling with bulk lattice constant of the geometric parameters of the reconstructed surfaces. This scaling is analogous to that found using low-energy, electron-diffraction surface-structure determination. The surface atomic force constants (found from a TBTE calculation) also scale monotonically with the lattice constant. Using TBTE models proposed previously for GaP, GaAs, GaSb, InP, and ZnSe, we find that the force constants scale as the inverse square of the bulk lattice constant. These results suggest that if distances are measured in units of the bulk lattice constant, the PES may be a universal function for the cleavage surface of zincblende-structure compound semiconductors, on average, with small fluctuations from this average occurring in individual materials. 22 refs., 5 figs., 1 tab
Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)
Using ab initio thermodynamics we compile a phase diagram for the surface of
Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto
ignored polar termination with octahedral iron and oxygen forming a wave-like
structure along the [110]-direction is identified as the lowest energy
configuration over a broad range of oxygen gas-phase conditions. This novel
geometry is confirmed in a x-ray diffraction analysis. The stabilization of the
Fe3O4(001)-surface goes together with dramatic changes in the electronic and
magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure
Surface electronic structure of the Fe3O4(100): Evidence of a half-metal to metal transition
In situ prepared Fe3O4(100) thin films were studied by means of scanning tunneling microscopy (STM) and spin-polarized photoelectron spectroscopy (SP-PES). The atomically resolved (2×2)R45°wavelike surface atomic structure observed by STM is explained based on density functional theory (DFT) and ab initio atomistic thermodynamics calculations as a laterally distorted surface layer containing octahedral iron and oxygen, referred to as a modified B layer. The work-function value of the Fe3O4(100) surface extracted from the cutoff of the photoelectron spectra is in good agreement with that predicted from DFT. On the Fe3O4(100) surface both the SP-PES measurements and the DFT results show a strong reduction of the spin polarization at the Fermi level (EF) compared to the bulk density of states. The nature of the states in the majority band gap of the Fe3O4 surface layer is analyzed
Changes in arginase isoforms in a murine model of neonatal brain hypoxia-ischemia.
BackgroundArginases (ARG isoforms, ARG-1/ARG-2) are key regulatory enzymes of inflammation and tissue repair; however, their role after neonatal brain hypoxia (H) and hypoxia-ischemia (HI) remains unknown.MethodsC57BL/6 mice subjected to the Vannucci procedure on postnatal day (P9) were sacrificed at different timepoints. The degree of brain damage was assessed histologically. ARG spatiotemporal localization was determined via immunohistochemistry. ARG expression was measured by Western blot and activity spectrophotometrically.ResultsARG isoform expression increased during neurodevelopment (P9-P17) in the cortex and hippocampus. This was suppressed with H and HI only in the hippocampus. In the cortex, both isoforms increased with H alone and only ARG-2 increased with HI at 3 days. ARG activity during neurodevelopment remained unchanged, but increased at 1 day with H and not HI. ARG-1 localized with microglia at the injury site as early as 4 h after injury, while ARG-2 localized with neurons.ConclusionsARG isoform expression increases with age from P9 to P17, but is suppressed by injury specifically in the hippocampus and not in the cortex. Both levels and activity of ARG isoforms increase with H, while ARG-1 immunolabelling is upregulated in the HI cortex. Evidently, ARG isoforms in the brain differ in spatiotemporal localization, expression, and activity during neurodevelopment and after injury.ImpactArginase isoforms change during neurodevelopment and after neonatal brain HI. This is the first study investigating the key enzymes of inflammation and tissue repair called arginases following murine neonatal brain HI. The highly region- and cell-specific expression suggests the possibility of specific functions of arginases. ARG-1 in microglia at the injury site may regulate neuroinflammation, while ARG-2 in neurons of developmental structures may impact neurodevelopment. While further studies are needed to describe the exact role of ARGs after neonatal brain HI, our study adds valuable data on anatomical localization and expression of ARGs in brain during development and after stroke
Genetic identification of cytomegaloviruses in a rural population of Côte d'Ivoire.
BACKGROUND: Cytomegaloviruses (CMVs) are herpesviruses that infect many mammalian species, including humans. Infection generally passes undetected, but the virus can cause serious disease in individuals with impaired immune function. Human CMV (HCMV) is circulating with high seroprevalence (60-100 %) on all continents. However, little information is available on HCMV genoprevalence and genetic diversity in subsaharan Africa, especially in rural areas of West Africa that are at high risk of human-to-human HCMV transmission. In addition, there is a potential for zoonotic spillover of pathogens through bushmeat hunting and handling in these areas as shown for various retroviruses. Although HCMV and nonhuman CMVs are regarded as species-specific, potential human infection with CMVs of non-human primate (NHP) origin, shown to circulate in the local NHP population, has not been studied. FINDINGS: Analysis of 657 human oral swabs and fecal samples collected from 518 individuals living in 8 villages of Côte d'Ivoire with generic PCR for identification of human and NHP CMVs revealed shedding of HCMV in 2.5 % of the individuals. Determination of glycoprotein B sequences showed identity with strains Towne, AD169 and Toledo, respectively. NHP CMV sequences were not detected. CONCLUSIONS: HCMV is actively circulating in a proportion of the rural Côte d'Ivoire human population with circulating strains being closely related to those previously identified in non-African countries. The lack of NHP CMVs in human populations in an environment conducive to cross-species infection supports zoonotic transmission of CMVs to humans being at most a rare event
Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-γ
Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary
infection, establishes life-long persistence in all infected individuals. Acute
hCMV infections cause a variety of diseases in humans with developmental or
acquired immune deficits. In addition, persistent hCMV infection may contribute
to various chronic disease conditions even in immunologically normal people. The
pathogenesis of hCMV disease has been frequently linked to inflammatory host
immune responses triggered by virus-infected cells. Moreover, hCMV infection
activates numerous host genes many of which encode pro-inflammatory proteins.
However, little is known about the relative contributions of individual viral
gene products to these changes in cellular transcription. We systematically
analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major
transcriptional activator and antagonist of type I interferon (IFN) signaling,
on the human transcriptome. Following expression under conditions closely
mimicking the situation during productive infection, IE1 elicits a global type
II IFN-like host cell response. This response is dominated by the selective
up-regulation of immune stimulatory genes normally controlled by IFN-γ and
includes the synthesis and secretion of pro-inflammatory chemokines.
IE1-mediated induction of IFN-stimulated genes strictly depends on
tyrosine-phosphorylated signal transducer and activator of transcription 1
(STAT1) and correlates with the nuclear accumulation and sequence-specific
binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis
nor secretion of IFN-γ or other IFNs seems to be required for the
IE1-dependent effects on cellular gene expression. Our results demonstrate that
a single hCMV protein can trigger a pro-inflammatory host transcriptional
response via an unexpected STAT1-dependent but IFN-independent mechanism and
identify IE1 as a candidate determinant of hCMV pathogenicity
Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response
MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe
Recommended from our members
New tight-binding pair potentials for mineral oxides: Application to {beta}-cassiterite (110), {beta}-tridymite (10{bar 1}0) and cristobalite (110)
Tight-binding, total-energy (TBTE) methods have successfully predicted surface atomic geometries for a variety of semiconducting and insulating materials that are well described by a nearest-neighbor model of interatomic interactions. However, little work has been done on distant-neighbor models, which are required to study many important mineral oxides. In this paper we demonstrate one way in which the TBTE methodology can be extended to these materials. To illustrate this approach, we calculate surface atomic structures for cassiterite SnO{sub 2} (110), {beta}-cristobalite SiO{sub 2}(110) and {beta}-tridymite SiO{sub 2} (10T0)
Recommended from our members
Surface structure, bonding, and dynamics: The universality of zincblende (110) potential energy surfaces
Using a tight-binding, total energy (TBTE) model we examine the hypothesis that the potential energy surfaces (PES) describing the (110) cleavage faces of the tetrahedrally coordinated, zincblende-structure compound semiconductors exhibit a common ``universal`` form if expressed in terms of suitably scaled parameters. TBTE calculations on both III-V and II-VI compounds reveal a linear scaling with bulk lattice constant of the geometric parameters of the reconstructed surfaces. This scaling is analogous to that found using low-energy, electron-diffraction surface-structure determination. The surface atomic force constants (found from a TBTE calculation) also scale monotonically with the lattice constant. Using TBTE models proposed previously for GaP, GaAs, GaSb, InP, and ZnSe, we find that the force constants scale as the inverse square of the bulk lattice constant. These results suggest that if distances are measured in units of the bulk lattice constant, the PES may be a universal function for the cleavage surface of zincblende-structure compound semiconductors, on average, with small fluctuations from this average occurring in individual materials. 22 refs., 5 figs., 1 tab
Recommended from our members
Atomic structure of the SnO sub 2 (110) surface
Using a tight-binding, total-energy model, we examine atomic relaxations of the ideal stoichiometric and reduced tin oxide (11) surfaces. In both cases we find a nearly bond-length conserving rumple of the top layer, and a smaller counter-relaxation of the second layer. These calculations show no evidence of surface states in the band gap for either surface
- …