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Abstract.

Using a tight-binding, total energy (TBTE) model we examine the

hypothesis that the potential energy surfaces (PES) describing the (110)

cleavage faces of the tetrahedrally coordinated, zincblende-structure

compound semiconductors exhibit a common "universal" form if expressed

in terms of suitably scaled parameters. TBTE calculations on both III-V

and II-VI compounds reveal a linear scaling with bulk lattice constant of

the geometric parameters of the reconstructed surfaces. This scaling is

analogous to that found using low-energy, electron-diffraction surface-

structure determination. The surface atomic force constants (found from a

TBTE calculation) also scale monotonically with the lattice constant. Using

TBTE models proposed previously for GaP, GaAs, GaSb, InP, InSb, and ZnSe,

we find that the force constants scale as the inverse square of the bulk

lattice constant. These results suggest that if distances are measured in

units of the bulk lattice constant, the PES may be a universal function for

the cleavage surfaces of zincblende-structure compound semiconductors,

on average, with small fluctuations from this average occurring in

individual materials.

2
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I. Introduction

2

:' Compound semiconductors which crystallize in the zincblende

', structure (e.g. ZnS, GaAs, InP, CdSe, and other III-V and II-VI materials)

i form charge neutral surfaces along their (110) cleavage planes. These

surfaces relax as a result of the redistribution of surface dangling bond

charge density and the accompanying rehybridization of the surface atomic

', orbitals. Moreover, these relaxations are characterized by large, nearly-

bond-length conserving displacements of the surface atoms from their

truncated bulk positions. 1,2 This is because the energy cost associated with

a significant distortion of the local bond lengths is large compared to that

of motion along a bond-length conserving path.

For many of these materials, the (110) surface atomic geometries

have been determined quantitatively by low-energy, electron-diffraction

(LEED) intensity analyses. In each case, the relaxed surface exhibits a large

tilt of the first (surface) layer relative to bulk positions and a much smaller

counter-tilt of second layer, with ali bond lengths approximately equal to

their bulk values. 1,2 An analysis of the displacements normal to the surface

within the top layer, described by the parameter A1j" (defined in Fig. 1),

showed that Al± scaled with the bulk lattice constant, ao, as would be

expected for a bond-lengtla conserving top-layer rotation. 3

The scaling of Al. with ao led to a re-examination of the entire body
3
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of LEED data using a top-layer only, bond-length conserving rotation model

for the relaxation. 2 This simple model leads to predicted intensities which

fit the LEED intensity data nearly as well as those associated with the

best-fit structures. Moreover, the resulting surface-layer tilt angles co,

(defined in Fig. 1) are essentially independent of the material (i. e., Wr = 29 °

+3°), as expected 3 from the linear scaling surface geometric parameters

with a o. The idea thus arose that the surface structure might be "universal"

in that all of the surface structure parameters would scale linearly with ao,

even for the completely refined structure. (This linear scaling with a o, was

contained implicitly within tight-binding total energy [TBTE] structure

calculations of III-V and II-VI compound surfaces, but not explicitly

discussed: '5) Subsequent TBTE structure calculations of both the (10T0)

and (1120) surfaces of various wurtzite-structure materials displayed a

similar universal behavior: the surface relaxes through approximately

bond-length conserving motions, and ali of the surface structure

parameters scale linearly with the bulk lattice constant (even the

deviations from bond-length conserving displacements). 6 In each case, the

relaxed surface geometry is determined primarily by the topology of the

truncated bulk surface, which allows the cation to relax to sp 2

hybridization via bond-length-conserving atomic displacements, a'2

Wang and Duke 7 extended the bond-length-conserving relaxation

model to surface vibrations by interpreting an observed 10 meV "optical"

surface phonon mode of the GaAs (110) surface 8 as a bond-length

conserving libration of the surface layer. A small class of such surface

modes is allowed due to the topology of the cleavage surfaces. A tight-

binding total energy (TBTE), frozen-phonon calculation of the frequency of
4
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such a libration reproduced the experimental value] However, bond-

charge slab model calculations 9 and TBTE, compressible-bond calculations 1°

of the atomic dynamics of GaAs (110) have since shown that this class of

bond-length-conserving modes do not figure prominently in the surface

lattice dynamics of compressible lattices. Consequently, the relationship

between the surface normal modes and surface topology is moreI:

• complicated than that between the surface topology and equilibrium
I

surface geometry.

r The curvature of the potential energy surface, as a function of atomic

displacements, determines the force constants for these displacements. In

the limit of an incompressible lattice (i.e., a lattice which allows only bond-

length conserving motions of the atoms), the potential energy is a function

of two angular coordinates per layer (for changes of layer tilt and

registration). Such a model has been demonstrated to be inadequate for a

description of the surface normal modes. 1° Each atom has three degrees of

freedom; consequently, to correctly describe the normal mode spectrum,

the potential energy as a function of surface atom displacements in all

directions (i. e., a "potential energy surface" [PES] which is a function of the

surface-atom coordinates), must be constructed for the compressible

lattice.

In this. paper we examine the relationship between surface topology,

surface equilibrium atomic structure (location of PES minimum) and atomic

force constants (curvature of the PES near its minimum) for the (110)

cleavage faces of a variety of III-V and II-VI compound semiconductors.

We use the same TBTE model which has successfully reproduced their

equilibrium surface atomic geometries and surface state eigenvalue
5
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spectra. _4'6 This method allows direct, tractable calculations of the surface

interatomic force constants (rather than treating them as independent

parameters) by relating them to the electronic structure and bulk elastic

parameters. First, we provide a comprehensive, quantitative study of the

incompressible-lattice limit by examining the effect of the bond-length

conservation constraint on the equilibrium surface structure, and effective

force constants for bond-length conserving surface vibrations. Next, we

generalize the model to include lattice compression, and show that the

concept of a universal-scaled force-constant matrix applies to the general

case, although in a different form than in the incompressible-lattice limit.

Calculations of the (110) surfaces of the II-VI compound ZnSe, and

III-V compounds GaAs, InP, GaP, GaSb and InSb yield four important

results. In the incompressible-lattice limit, the displacements of the

surface atoms from their truncated bulk positions scale linearly with bulk

lattice constants, consistent with LEED results. 2'3 Moreover, the effective

force constant for a bond-length-conserving tilt of the surface layer scales

as the inverse fourth power of the lattice constant, so that a universal form

of the PES is predicted in this limit. When the constraint of

incompressibility is relaxed, both geometric and dynamic parameters still

scale with the bulk lattice constant, although values for the various

materials exhibit scatter around the trend curve. The force constants for

atomic displacements now scale as the inverse square of the lattice

constant, however, leading to a single, universal form of the force-constant

matrix. Thus, this analysis predicts both a universal minimum and

curvature of the PES for the (110) surface, with small deviations from the

average characterizing individual materials.
6
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We proceed by describing the 3'BTE model in Section II and its

application to zincblende-structure (110) surfaces in Section III. Our

scaling analysis is presented in Section IV, and we conclude with a

synopsis.

II. The Tight-Binding Total Energy Model

The tight-binding total energy (TBTE) model used herein was

developed by Chadi, 5 Vogl et al., 11 and Mailhiot et al. 12 The total energy is

separated into a one-electron "band structure" contribution and an elastic

contribution from each of the bonds:

E,o,o,= E,, + Z,[U,(ij)eo.+ U(ij)c,II. (1)
ij

G0. is the fractional change in the distance between near-neighbor atoms i

and j. Eh, is the sum of the occupied eigenvalues of a one-electron,

orthogonal, nearest-neighbor, Slater_Koster 13 Hamiltonian integrated over

the reduced Brillouin zone. Electronic parameters in the Hamiltonian were

chosen to fit bulk crystal structures, optical absorption and photoemission

data, and are taken from previous studies. TM The integration of eigenvalues

over k-space for Eh, is accomplished via a quadrature scheme developed by

Chadi and Cohen, _5 which approximates the integral as a sum of

eigenvalues evaluated at a set of nodes, or "special" k-points. For the

substances studied here, convergence is rapid. Use of a single node is

adequate to fix energy differences to 0.5 meV per unit cell. This leads to

an uncertainty in the calculated force constants of less than 5 percent. The

7
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elastic parameters, UI and U2, are determined from bulk structure and

moduli, and are also taken from previous work. 14

It is useful at this point to define the various limits in which we

examine the scaling relationships. Equation (1) shows that when U2 is very

large, motions which compress bonds are energetically unfavorable. At the

singular point where U2 is infinite, the lattice is rigorously incompressible

and e is always zero. For this "incompressible lattice limit," atomic motion is

only allowed along bond-lep.gth-conserving paths. We restrict our

discussion of the incompressible lattice to motions which change layer tilts

without changing layer registration. For large but finite U2 (i.e., a "large

modulus limit"), bond compression, while energetically unfavorable, is

nonetheless allowed. This limit is examined by setting U2 for each material

to 99.0 eV per bond, an order of magnitude larger than typical

empirically-fitted values. The compressible lattice is investigated by

setting the various U2 to empirically fitted values.

These limits can be characterized by which term dominates the

total-energy expression (Equation [1]). For an incompressible lattice _, and

hence the strain contribution, always equal zero. Changes in the total

energy are then due solely to changes in the band-structure energy as the

positions of the various atoms are changed in such a fashion as to leave all

bond lengths at their bulk value. In the large-modulus li, fit, changes in the

total energy are dominated by changes in the repulsive strain term.

Finally, for the compressible lattice both the band-structure and repulsive

terms contribute to changes in the total energy.

fl
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III. Zincblende (110) Surfaces

The zincblende structure is a face-centered cubic lattice with two

atoms (one compound formula unit) per unit cell. Each atom is

tetrahedrally coordinated. The (110) surface (Fig. 1) consists of parallel

zigzag chains back-bonded to lower layers of similar chains.

Fig. 1 contains a schematic depiction of a typical reconstruction of a

zincblende-structure compound semiconductor (110) surface, and a

definition of the independent surface structural parameters. The surface-

layer tilt angle, co,, of the reconstructed top layer relative to the ideal bulk

surface is geometrically related to the displacements Al± and Aly; a similar

scaling with the bulk lattice constant ao of these latter two parameters

implies a similar tilt angle for each material.

We model the surface with a slab eight atomic layers thick. Periodic

boundary conditions are imposed in all directions; in the z direction

(normal to the surface) the period is much longer than the slab thickness.

Slabs therefore do not interact. The total energy of the system is

minimized by minimization of the Hellman-Feynman forces _6 on each atom,

providing the equilibrium structure of the slab. Then, the top layer atoms

are displaced by various amounts, while all other atoms are frozen in their

equilibrium positions. The total energy (as a function of the positions of

the two surface atoms) is fitted to a harmonic function (second order in the

atomic displacements), providing the PES for small displacements of the

surface atoms from equilibrium. The gradient of this surface in an

appropriate coordinate system gives the various pairwise surface atom-

atom force constants. 1° The periodic boundary conditions require that any
9
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t

atomic displacement in a surface unit cell be mimicked in ali other cells.

The six-by-six matrix of force constants together with the atomic masses

provide, within the limitations of the TBTE model, the equations of motion

for surface vibrations at the center of the reduced surface Brillouin zone

(r).

This method ignores long-range Coulomb interactions, lt thus cannot,

in general, provide high accuracy in phonon dispersion calculations. For

example, the splitting of LO and TO modes in GaAs cannot be reproduced

without such interactions. 17 The method can be extended to include long-

range interactions. _8 Neglect of these interactions, however, is not expected

to affect our purpose here" to demonstrate trends in the local force

constants and their relationship with surface electronic properties, thus
10

gaining insight into the common features of these materials.

IV. Scaling

A. Surface Atomic Structure (Minima of the Surface PES)

Figures 2 and 3 illustrate the results of TBTE minimization structure

calculations for the reconstruction parameters Al. and Al y (Fig. 1),

respectively, under various constraints. In each graph a reconstruction

parameter is plotted as a function of the bulk lattice constant ao. Figs. 2 (a)

and 3 (a) represent the large-modulus limit, for which bond-compressing

displacements are allowed, but are energetically unfavorable. Ali of the

other independent linear parameters from Fig. 1 have also been calculated,

and each scales in the same way as Al.L and A_y. The surface-tilt angles for

the materials, found from the Al. and A_y values in Figs. 2 and 3, are
10
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displayed in Table 1; the results agree quantitatively with the 29 + 3

degree result from the scaling of the LEED data. z'3 Thc qe results reveal that

in an average sense, the positions of the PES minima linearly scale with ao.

When the U2 parameters are obtained empirically (lower panels, Figs.

2, 3), the lattice assumes its "normal" compressibility. Differences in the

local repulsive potentials from one compound to another degrade the

scaling relationship. There remains, however, a significant correlation

among the various Al± and ml y. (Once again, the other parameters from Fig.

1 scale in the saree way.) Therefore the concept of a universal average PES

minimum remains valid for compressible, as well as incompressible,

lattices.

B. Surface Force Constants (Curvatures of the Surface PES)

As with the equilibrium surface atomic structure (specified by the

PES minimum), the surface elastic force constants (specified by the

curvature of the PES near its minimum) are determined by the surface

electronic structure and interatomic repulsion potentials. It is reasonable,

therefore, to ask if the force constants of the vario_._s materials have some

analog to the universal structural scaling evident in Figs. 2 and 3. lt is

useful to approach this question by considering separately the band

structure and elastic contributions to the total energy. The incompressible

lattice is a convenient starting point because it illustrates the special case

of bond-length conserving ("bond-bending") displacements that can exist

for the zincblende-structure (110) surfaces by virtue of the surface

topology. While these displacements do not exert a dominant effect on the

11
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surface vibrational modes of the compressible lattice, they are of interest

because their force constants differ fundamentally from those of "bond-

stretching" displacements.

Suppose the surface layer of each material is moved from its

equilibrium tilt angle co, to a new tilt co along a bond-length conserving

path. Because the structures are similar, the distance that a surface atom of

the i th material has been displaced is Caoi(Co-eor), where aoi is the bulk lattice

constant of the i'h material, and c is a dimensionless number which is

constant for ali materials. The curvature of the total energy as a function of

o0,co thus equals kBtci/c a where :- is the effective force constant for aK, BI.,Ci

displacement of the atoms along a bond-length conserving path. These

curvatures are shown in Fig. 4 for the various materials. According to Fig.

4, if the atoms of each substance are displaced by the same distance from

equilibrium in this direction, the various restoring forces will vary as ao "4.

The origin of the result shown in Fig. 4 can be ascertained from an

analytic argument based on a simplified tight-binding picture. Consider a

! set of slabs consisting of one slab each of GaAs, InSb, GaP, etc., with each

; slab constrained to have ali bond lengths equal to the bulk values. Each

! slab has an arbitrarily imposed atomic structure, such that the structures

' of ali the slabs, measured in units of their respective lattice constant.,, are

I identical. The set is then said to be composed of geometrically similar

slabs. Since ali bond lengths have bulk values, the strain contribution to

the total energies of the slabs vanish; energy differences as a function of

atomic displacements for each slab arise solely from direction cosines in

the electronic Hamiltonians of the various materials. Moreover., when the

i shtbs are geometrically similar, the direction cosines are identical from one
12
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material to another.

Let the arbitrary structure imposed on the geometrically similar

slabs be denoted by 0_. We wish to compare the band-structure energies of

the various slabs in this set. Harrison and co-workers have developed a

universal electronic parameter set in which the off-diagonal Hamiltonian

elements are gzven by v/aC, where v is a constant for all materials and d is

the bond length. 19,2° Using this parameter set, the electronic Hamiltonians

for the various materials differ only in their diagonal elements, and in that

their off-diagonal elements scale as the inverse square of the respective

lattice constants. Furthermore, since the electronic structures of all the

different materials are qualitatively similar, 11,19 each material has a

, comparable degree of sp hybridization from the diagonal elements of its

1 electronic Hamiltonian. Moreover, each material has a similar density ofi
' states for its filled bands,19'2° justifying a second-moment aproximation 21
i
j for the band structure energy of the various slabs. It can be shown that in

: this approximation, the band structure energies of the various slabs are

proportional to the widths of their respective occupied bands. These

widths are, in turn, proportional to the magnitudes of the off-diagonal

elements,21 and hence proportional to ao2. For the set of slabs with

structure a, then, the total energy scales as ao=. That is, for the i 'h material,

Ei = baao "2 ,

where b,_ is a constant valid for all materials in structure o_. If the slabs are

all moved to a new structure 13, the energy cost is

zlEi = b_ao "2- baao2=(b¢- b_ao "2 . (2)
13
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In the limit of the incompressible lattice, ali the slabs have identical

equilibrium structures in units of the lattice constants (Table I, Figs. 2 and

3). We now chose o_ to be this common equilibrium structure, with each

slab having an identical equilibrium tilt o_, and 13 to be the same structure

except for a different surface layer tilt co. Equation (2) dictates that the

energy costs associated with these tilts will scale as ao2. If there is some

regime near cor in which the total energy is quadratic in the displacement

Cao(_ - co), that is,

AE_ = (1/2)k sm_l[Cao_(co-co,)]2, (3)

then the effective force constant is given by

k _LCi= 2AEi/[Caoi(co- co,)]z . (4)

Equation (4), along with the aoZ scaling of AE_ , immediately gives an ao4

scaling for k_Lc_.

Within the tight-binding model, deviations from this ideal behavior

can be expected in a less approximate treatment. Such deviations occur in

the results of Fig. 4, which were found using empirically fitted electronic

parameters, and without the simplistic assumptions about the degree of

hybridization and the densities of states in the argument given above.

Further deviations, from effects such as ionicity _s, would arise from a more

complete model; however, we expect these to be small.

While the incompressible-lattice limit is useful in characterizing the

electronic contribution to the surface dynamics, real lattices are

compressible. In order to examine the independent elastic contributions to

the force constants, we first consider the large modulus limit, in which

changes in the total energy are dominated by changes in the repulsive

term of Equation (1). Moreover, because each material has U2 set to 99.0
14
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eV/bond, in a force constant calculation the contribution of the elastic term

is the same magnitude for each substance. The force constant k,,l,,_ (for

motion in the x-direction of atom 1 [the cation] of the surface unit cell),

calculated in the large-modulus limit, is shown in the top panel of Fig. 5 as

a function of the inverse square of the lattice constant. There is clearly a

linear relationship between these values. Calculations of each of the 36

independent pairwise surface-atom Cartesian force constants produce

similar scaling curves. It is interesting to note that this scaling relationship

is qualitatively different from that of Fig. 4, since it reflects the dominance

of the repulsive strain energy, as opposed to the band structure energy, in

the total energy difference.

In the large-modulus limit, the diagonal elements of the force

constant matrix are given by

kx, = 2 AEi/ x_ , (5)

where x; is any Cartesian displacement. If the various materials all have

displacements of x,. proportional to their lattice constants, the fractional

changes in bond distances e0 are independent of the lattice constants. Since

the value of U2 is identical for each material, BE i is constant. This causes the

force constant to scale inversely with ao2, as shown in the top panel of Fig.

5.

This large-modulus limit is unphysical, however, since for a

compressible lattice the different repulsive potentials will vary with the

respective bulk moduli. The experimental bulk moduli themselves,

however, roughly scale with ao .z2 This suggests that the surface atom force
!5
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constants might scale as some function of ao, even for the compressible

lattice.

When the elastic parameters are determined empirically, both the

repulsive and electronic terms c,ontribute to changes in the total energy.

Moreover, these contributions are of comparable magnitude. The various

materials also exhibit differences in their local chemical environments and

in their interatomic repulsive forces. The different substances therefore

deviate from a simple scaling law. In an average sense (as for the surface

atomic coordinates), however, the surface atomic force constants still

exhibit an aoZ scaling, as shown in the lower panel of Fig. 5.

We infer from Fig. 5, and its analogs for the other independent force

constants, that the force-constant matrix of each material is, on average,

equal to a scalar multiple of a single, universal matrix. This universality of

the PES indicates that, within the TBTE model, characteristics of the surface

vibrational modes and frequencies of the various materials are determined

primarily by the lattice constant and the atomic masses. Our analysis

further suggests that similar scaling laws should be exhibited by bulk

vibrational modes.

V. Synopsis

The universality of geometric structures of (110) surfaces of

zincblende-structure compound semiconductors has been established

experxmentally. 2'3 The geometric parameters which describe the surface

reconstructions scale linearly with a single variable, the bulk lattice

constant. These reconstructed geometries correspond to a minimum in the
16

i



Godin, LaFemina, Duke, Abstract #322, Program # J7-ThA9

potential energy surface (PES), which is a function of the atomic positions.

This structural universality is also predicted by our tight-binding

total energy calculations for GaAs, GaP, InP, InSb and ZnSe. Agreement

with a linear scaling of the surface geometric parameters in the lattice

constant is rigorous in the incompressible-lattice limit, and approximate

when bond lengths are allowed to vary.

The idea of universality can i_e applied to the local curvature about

equilibrium, as well as the equilibrium position, of the PES. In the limit of

an incompressible lattice, TBTE calculations show that the curvature scales

as the inverse fourth power of the bulk lattice constant. When bond

compressions are allowed, curvatures scale approximately as the inverse

square of the lattice constant. This difference is due to the differing

scalings of the electronic and strain contributions to the total energy.

These results imply that for each zincblende-structure compound

surface the six-by-six matrix of atomic force constants is, on average, equal

to a scalar multiple of a single universal matrix. Differences in modes and

frequencies of surface vibrations among the various materials depend

primarily on the lattice constants and atomic masses. Thus, the concept of a

universal average PES, with distances measured in units of the lattice

constant, is supported by our analyses of both, the location of its minimum

and the curvature about this minimum.
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Figure Captions

Fig. 1. Schematic representation of a typical reconstruction of a (110)

surface of a III-V or II-VI semiconductor, showing geometric

parameters of the reconstructed surface.

Fig. 2. Tight-binding total-energy (TBTE) predictions for the parameter Ajl

(Fig. 1) for (1 10) surfaces of GaP, GaAs, ZnSe, InP, GaSb and InSb,

plotted as a function of lattice constant ao for: (a) the large-modulus

limit, and (b) the compressible lattice. The linear scaling relation

implies a universal reconstruction. Ali quantities are expressed in

units of /_ngstroms.

Fig. 3. Tight-binding total-energy (TBTE) predictions for the parameter A_y

(Fig. 1) for (110) surfaces of GaP, GaAs, ZnSe, InP, GaSb and InSb,

plotted as a function of lattice constant ao. Panels (a) and (b) refer to

the same cases as the corresponding panels of Fig. 2. Ali quantities

are in expressed units of /_ngstroms.

Fig. 4. TBTE calculation of the force constants for bond-length conserving

displacements of surface layer atoms, c is a dimensionless structural

parameter, defined in the text, which is constant for all materials.

Like the structure parameters, the force constant scales with the bulk

lattice constant, in this case as ao4. Units for force constants are

Newtons/meter; for lattice constants, /_ngstroms.

Fig. 5. TBTE calculation of the force constants for a linear displacement of

each surface cation in the x direction (parallel to the surface zigzag

chains) for: (a) the large-modulus limit, and (b) the compressible

lattice. Units for force constants are Newtons/meter; for lattice

constants, _ngstroms.
2O



Table I. Surface layer tilt angle cor of the relaxed (110) surfaces of various
materials calculated with the TBTE model for incompressible and

compressible lattice models.

GaP GaAs ZnSe I n P GaSb I n S b

ao (/_) 5.451 5.654 5.657 5.869 6.118 6.478

cor (degrees) for:

incompressible lattice 27.2 27.6 27.7 29.6 27.7 28.6

compressable lattice 28.9 29.4 29.9 32.1 28.9 29.8

i



side view (a)
Al,yX

_" d12,y
z A

1,l 7r-03

top view (b)

i -_ ao ' "-i x

' ' _Z
Y

,// Oon2nd layer

top layer (_ cation

Fig.1 T.J.Godln,J.P.LaFemlna,C.B.Duke,J.Vac._cl.Tech.A.

-



q

0.8

(a)

I_L InP _Sb

A

07
• " G_Sb

0.6 -! ..... , ......

5.4 6.0 6.b

a o

0.8-

z_I_L (b)

I

0.7 Zn_ GaSb
, GaAs

ra

GaP
0.6 ..... , ......

5.4 6.0 6.6
a

0

Fig. 2 T.J. Godin, J.P. LaFemina, C.B. Duke, J. Vac. Sci. Tech. A.
_

-

I
i



5.2

(a) InSb_

AIy 4.7 InP

Zn_

aAs
4.2 ..... , .....

5.4 6.0 6.6
a

0

5.2 (b) InSb__

Aly

4.7

ZnSe

__GaAsGaP
4.2 ..... , .....

5.4 6.0 6.6

a o

Fig.3 T.J. Godin,J.P. LaFemina,C.B. Duke,J. Vac.Sci. Tech.A.



o

aAsjO(kBLc/C2) G aP

6o /_nSe50
/ [] InSbGaSb
f

40 /". , •
0.0004 0.0008 0.0012

-4a
0

Fia. 4 T.J. Godin. J.P. LaFemina. C.B. Duke. J. Vae. Sci. Tc,eh. A.



90

kxl,xl (a) GaAs _,,_

80 Se

70

InSb / GaSb
,,,/

60 ""'-. , . , "
0.022 0.026 0.030 0.034

6 GaP

kxl,x I (b) lnP
5 ° /

GaAs

4

- " I " I '

0.022 0.026 0.030 0.034

Fig.5 T.J. Godin,J.P. LaFemina,C.B. Duke,J. Vac. Sci.Tech.A.



1




