15 research outputs found

    Blockade of HIV-1 Infection of New World Monkey Cells Occurs Primarily at the Stage of Virus Entry

    Get PDF
    HIV-1 naturally infects chimpanzees and humans, but does not infect Old World monkeys because of replication blocks that occur after virus entry into the cell. To understand the species-specific restrictions operating on HIV-1 infection, the ability of HIV-1 to infect the cells of New World monkeys was examined. Primary cells derived from common marmosets and squirrel monkeys support every phase of HIV-1 replication with the exception of virus entry. Efficient HIV-1 entry typically requires binding of the viral envelope glycoproteins and host cell receptors, CD4 and either CCR5 or CXCR4 chemokine receptors. HIV-1 did not detectably bind or utilize squirrel monkey CD4 for entry, and marmoset CD4 was also very inefficient compared with human CD4. A marmoset CD4 variant, in which residues 48 and 59 were altered to the amino acids found in human CD4, supported HIV-1 entry efficiently. The CXCR4 molecules of both marmosets and squirrel monkeys supported HIV-1 infection, but the CCR5 proteins of both species were only marginally functional. These results demonstrate that the CD4 and CCR5 proteins of New World monkeys represent the major restriction against HIV-1 replication in these primates. Directed adaptation of the HIV-1 envelope glycoproteins to common marmoset receptors might allow the development of New World monkey models of HIV-1 infection

    Structural diversity in the type IV pili of multidrug-resistant Acinetobacter

    Get PDF
    Acinetobacter baumannii is a Gram-negative coccobacillus found primarily in hospital settings that has recently emerged as a source of hospital-acquired infections. A. baumannii expresses a variety of virulence factors, including type IV pili, bacterial extracellular appendages often essential for attachment to host cells. Here, we report the high resolution structures of the major pilin subunit, PilA, from three Acinetobacter strains, demonstrating thatA. baumannii subsets produce morphologically distinct type IV pilin glycoproteins. We examine the consequences of this heterogeneity for protein folding and assembly as well as host-cell adhesion by Acinetobacter. Comparisons of genomic and structural data with pilin proteins from other species of soil gammaproteobacteria suggest that these structural differences stem from evolutionary pressure that has resulted in three distinct classes of type IVa pilins, each found in multiple species

    Adaptation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins to New World Monkey Receptors

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection encounters an early block in the cells of New World monkeys because the CD4 receptor does not efficiently support HIV-1 entry. We adapted HIV-1(NL4-3) and HIV-1(KB9), two HIV-1 variants with different envelope glycoproteins, to replicate efficiently in cells expressing the CD4 and CXCR4 proteins of the common marmoset, a New World monkey. The HIV-1(NL4-3) adaptation involves three gp120 changes that result in a specific increase in affinity for the marmoset CD4 glycoprotein. The already high affinity of the HIV-1(KB9) envelope glycoproteins for marmoset CD4 did not significantly change as a result of the adaptation. Instead, changes in the gp120 variable loops and gp41 ectodomain resulted in improved replication in cells expressing the marmoset receptors. HIV-1(KB9) became relatively sensitive to neutralization by soluble CD4 and antibodies as a result of the adaptation. These results demonstrate the distinct mechanistic pathways by which the HIV-1 envelope glycoproteins can adapt to less-thanoptimal CD4 molecules and provide HIV-1 variants that can overcome some of the early blocks in New World monkey cells

    Cytolysis by CCR5-Using Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Is Dependent on Membrane Fusion and Can Be Inhibited by High Levels of CD4 Expression

    No full text
    T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing

    Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO).

    No full text
    Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills
    corecore