852 research outputs found
Kinetics of Competing Reactions of N-aryl-4-chloro-1,8-naphthalimides with Primary Amines
Color poster with text, diagrams, tables, and graphs.This study presented the mechanistic implications of the kinetics of competing reactions of N-aryl-4-chloro-1,8-naphthalimides with primary amines.University of Wisconsin--Eau Claire Office of Research and Sponsored Programs; Petroleum Research Fund
DAYENU: a simple filter of smooth foregrounds for intensity mapping power spectra
We introduce DPSS Approximate lazY filtEriNg of foregroUnds (DAYENU), a linear, spectral filter for H I intensity mapping that achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal modelling of the underlying data. Beyond 21-cm power-spectrum estimation, our filter is suitable for any analysis where high dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal Sequences which are an optimal basis to model band-limited foregrounds in 21-cm intensity mapping experiments in the sense that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of large-scale line-of-sight modes that are inaccessible to tapered discrete Fourier transform estimators. Since these modes have the largest SNRs,DAYENU significantly increases the sensitivity of 21-cm analyses over tapered Fourier transforms. Slight modifications allow us to use DAYENU as a linear replacement for iterative delay CLEAN ing (DAYENUREST). We refer readers to the Code section at the end of this paper for links to examples and code
The relationship between anti-mullerian hormone in women receiving fertility assessments and age at menopause in subfertile women: evidence from large population studies
<p>Context: Anti-Müllerian hormone (AMH) concentration reflects ovarian aging and is argued to be a useful predictor of age at menopause (AMP). It is hypothesized that AMH falling below a critical threshold corresponds to follicle depletion, which results in menopause. With this threshold, theoretical predictions of AMP can be made. Comparisons of such predictions with observed AMP from population studies support the role for AMH as a forecaster of menopause.</p>
<p>Objective: The objective of the study was to investigate whether previous relationships between AMH and AMP are valid using a much larger data set.</p>
<p>Setting: AMH was measured in 27 563 women attending fertility clinics.</p>
<p>Study Design: From these data a model of age-related AMH change was constructed using a robust regression analysis. Data on AMP from subfertile women were obtained from the population-based Prospect-European Prospective Investigation into Cancer and Nutrition (Prospect-EPIC) cohort (n = 2249). By constructing a probability distribution of age at which AMH falls below a critical threshold and fitting this to Prospect-EPIC menopausal age data using maximum likelihood, such a threshold was estimated.</p>
<p>Main Outcome: The main outcome was conformity between observed and predicted AMP.</p>
<p>Results: To get a distribution of AMH-predicted AMP that fit the Prospect-EPIC data, we found the critical AMH threshold should vary among women in such a way that women with low age-specific AMH would have lower thresholds, whereas women with high age-specific AMH would have higher thresholds (mean 0.075 ng/mL; interquartile range 0.038–0.15 ng/mL). Such a varying AMH threshold for menopause is a novel and biologically plausible finding. AMH became undetectable (<0.2 ng/mL) approximately 5 years before the occurrence of menopause, in line with a previous report.</p>
<p>Conclusions: The conformity of the observed and predicted distributions of AMP supports the hypothesis that declining population averages of AMH are associated with menopause, making AMH an excellent candidate biomarker for AMP prediction. Further research will help establish the accuracy of AMH levels to predict AMP within individuals.</p>
Constraining the regular Galactic Magnetic Field with the 5-year WMAP polarization measurements at 22 GHz
[ABRIDGED] The knowledge of the regular component of the Galactic magnetic
field gives important information about the structure and dynamics of the Milky
Way, as well as constitutes a basic tool to determine cosmic rays trajectories.
It can also provide clear windows where primordial magnetic fields could be
detected. We want to obtain the regular (large scale) pattern of the magnetic
field distribution of the Milky Way that better fits the polarized synchrotron
emission as seen by the 5-year WMAP data at 22 GHz. We have done a systematic
study of a number of Galactic magnetic field models: axisymmetric, bisymmetric,
logarithmic spiral arms, concentric circular rings with reversals and
bi-toroidal. We have explored the parameter space defining each of these models
using a grid-based approach. In total, more than one million models are
computed. The model selection is done using a Bayesian approach. For each
model, the posterior distributions are obtained and marginalised over the
unwanted parameters to obtain the marginal 1-D probability distribution
functions. In general, axisymmetric models provide a better description of the
halo component, although attending to their goodness-of-fit, the rest of the
models cannot be rejected. In the case of disk component, the analysis is not
very sensitive for obtaining the disk large scale structure, because of the
effective available area (less than 8% of the whole map and less than 40% of
the disk). Nevertheless, within a given family of models, the best-fit
parameters are compatible with those found in the literature. The family of
models that better describes the polarized synchrotron halo emission is the
axisymmetric one, with magnetic spiral arms with a pitch angle of ~24 degrees,
and a strong vertical field of 1 microG at z ~ 1 kpc. When a radial variation
is fitted, models require fast variations.Comment: 14 pages, 9 figures. Accepted for publication in A&
Dissolution Amplification by Resonance and Cavitational Stimulation at Ultrasonic and Megasonic Frequencies
Acoustic stimulation offers a green pathway for the extraction of valuable elements such as Si, Ca, and Mg via solubilization of minerals and industrial waste materials. Prior studies have focused on the use of ultrasonic frequencies (20-40 kHz) to stimulate dissolution, but mega sonic frequencies (≥1 MHz) offer benefits such as matching of the resonance frequencies of solute particles and an increased frequency of cavitation events. Here, based on dissolution tests of a series of minerals, it is found that dissolution under resonance conditions produced dissolution enhancements between 4x-to-6x in Si-rich materials (obsidian, albite, and quartz). Cavitational collapse induced by ultrasonic stimulation was more effective for Ca- and Mg-rich carbonate precursors (calcite and dolomite), exhibiting a significant increase in the dissolution rate as the particle size was reduced (i.e. available surface area was increased), resulting in up to a 70x increase in the dissolution rate of calcite when compared to unstimulated dissolution for particles with d50\u3c 100 μm. Cavitational collapse induced by mega sonic stimulation caused a greater dissolution enhancement than ultrasonic stimulation (1.5x vs 1.3x) for amorphous class F fly ash, despite its higher Si content because the hollow particle structure was susceptible to breakage by the rapid and high number of lower-energy mega sonic cavitation events. These results are consistent with the cavitational collapse energy following a normal distribution of energy release, with more cavitation events possessing sufficient energy to break Ca-O and Mg-O bonds than Si-O bonds, the latter of which has a bond energy approximately double the others. The effectiveness of ultrasonic dissolution enhancement increased exponentially with decreasing stacking fault energy (i.e., resistance to the creation of surface faults such as pits and dislocations), while, in turn, the effectiveness of mega sonic dissolution increased linearly with the stacking fault energy. These results give new insights into the use of acoustic frequency selections for accelerating elemental release from solutes by the use of acoustic perturbation
Mapping Cosmic Dawn and Reionization: Challenges and Synergies
Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored
observational eras in cosmology: a time at which the first galaxies and
supermassive black holes formed and reionized the cold, neutral Universe of the
post-recombination era. With current instruments, only a handful of the
brightest galaxies and quasars from that time are detectable as individual
objects, due to their extreme distances. Fortunately, a multitude of
multi-wavelength intensity mapping measurements, ranging from the redshifted 21
cm background in the radio to the unresolved X-ray background, contain a
plethora of synergistic information about this elusive era. The coming decade
will likely see direct detections of inhomogenous reionization with CMB and 21
cm observations, and a slew of other probes covering overlapping areas and
complementary physical processes will provide crucial additional information
and cross-validation. To maximize scientific discovery and return on
investment, coordinated survey planning and joint data analysis should be a
high priority, closely coupled to computational models and theoretical
predictions.Comment: 5 pages, 1 figure, submitted to the Astro2020 Decadal Survey Science
White Paper cal
Calibration of ATLAS Tile Calorimeter at Electromagnetic Scale
In this paper we summarize the measurement of the electromagnetic (EM) scale calibration constant for 11% of the Tile Calorimeter modules exposed to electron and muon test beams at CERN SPS accelerator. The Tile Calorimeter modules are currently installed in the ATLAS detector. The analysis presented in this paper takes into account the recent improvements in the Tile Calorimeter cesium calibration, charge injection system calibration and Fit Method energy reconstruction. The overall conversion factor between the measured charge and the energy deposited by measured particles for Tile Calorimeter cells is ~pC/GeV, with spread of %. We discuss in detail the sources of uncertainties of EM scale calibration constant. We also show, that after inter-calibrating all the Tile Calorimeter cells with a~radioactive cesium source and setting the EM scale in the first calorimeter sampling with electron beams, the values of signals measured in the second and third calorimeter sampling need to be increased by 1--9% to keep the EM scale uniform in the whole calorimeter
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
- …