466 research outputs found

    The TeV spectrum of H1426+428

    Get PDF
    The BL Lac object H1426+428 was recently detected as a high energy gamma-ray source by the VERITAS collaboration (Horan et al. 2002). We have reanalyzed the 2001 portion of the data used in the detection in order to examine the spectrum of H1426+428 above 250 GeV. We find that the time-averaged spectrum agrees with a power law of the shape dF/dE = 10^(-7.31 +- 0.15(stat) +- 0.16(syst)) x E^(-3.50 +- 0.35(stat) +- 0.05(syst)) m^(-2)s^(-1)TeV^(-1) The statistical evidence from our data for emission above 2.5 TeV is 2.6 sigma. With 95% c.l., the integral flux of H1426+428 above 2.5 TeV is larger than 3% of the corresponding flux from the Crab Nebula. The spectrum is consistent with the (non-contemporaneous) measurement by Aharonian et al. (2002) both in shape and in normalization. Below 800 GeV, the data clearly favours a spectrum steeper than that of any other TeV Blazar observed so far indicating a difference in the processes involved either at the source or in the intervening space.Comment: LaTeX, 8 pages, 4 figures, accepted for publication in Ap

    Search for High Energy Gamma Rays from an X-ray Selected Blazar Sample

    Get PDF
    Our understanding of blazars has been greatly increased in recent years by extensive multi-wavelength observations, particularly in the radio, X-ray and gamma-ray regions. Over the past decade the Whipple 10m telescope has contributed to this with the detection of 5 BL Lacertae objects at very high gamma-ray energies. The combination of multi-wavelength data has shown that blazars follow a well-defined sequence in terms of their broadband spectral properties. Together with providing constraints on emission models, this information has yielded a means by which potential sources of TeV emission may be identified and predictions made as to their possible gamma-ray flux. We have used the Whipple telescope to search for TeV gamma-ray emission from eight objects selected from a list of such candidates. No evidence has been found for VHE emission from the objects in our sample, and upper limits have been derived for the mean gamma-ray flux above 390GeV. These flux upper limits are compared with the model predictions and the implications of our results for future observations are discussed.Comment: 15 pages, 2 figures, Accepted for publication in Ap

    A Search for TeV Gamma-Ray Emission from High-Peaked Flat Spectrum Radio Quasars Using the Whipple Air-Cherenkov Telescope

    Get PDF
    Blazars have traditionally been separated into two broad categories based upon their optical emission characteristics; BL Lacs, with faint or no emission lines, and flat spectrum radio quasars (FSRQs) with prominent, broad emission lines. The spectral energy distribution of FSRQs has generally been thought of as being more akin to the low-peaked BL Lacs, which exhibit a peak in the infrared region of the spectrum, as opposed to high-peaked BL Lacs (HBLs), which exhibit a peak in UV/X-ray region of the spectrum. All blazars currently confirmed as sources of TeV emission are HBLs. Recent surveys have found several FSRQs exhibiting spectral properties similar to HBLs, particularly the synchrotron peak frequency. These objects are potential sources of TeV emission according to several models of blazar jet emission and blazar evolution. Measurements of TeV flux or upper limits could impact existing theories explaining the links between different blazar types and could have a significant impact on our understanding of the nature of objects that are capable of TeV emission. In particular, the presence (or absence) of TeV emission from FSRQs could confirm (or cast doubt upon) recent evolutionary models that expect intermediate objects in a transitionary state between FSRQ and BL Lac. The Whipple 10 meter imaging air-Cherenkov gamma-ray telescope is well suited for TeV gamma-ray observations. Using the Whipple telescope, we have taken data on a small selection of nearby(z<0.1 in most cases), high-peaked FSRQs. Although one of the objects, B2 0321+33, showed marginal evidence of flaring, no significant emission was detected. The implications of this paucity of emission and the derived upper limits are discussed.Comment: accepted for publication in Astrophysical Journa

    Does Al4H14— cluster anion exist? High-level ab initio study

    Get PDF
    A comprehensive ab initio investigation using coupled cluster theory with the aug-cc-pVnZ, n = D,T basis sets is carried out to identify distinct structures of the Al4H14— cluster anion and to evaluate its fragmentation stability. Both thermodynamic and mechanistic aspects of the fragmentation reactions are studied. The observation of this so far the most hydrogenated aluminum tetramer was reported in the recent mass spectrometry study of Li et al. (2010) J Chem Phys 132:241103–241104. The four Al4H14— anion structures found are chain-like with the multiple-coordinate Al center and can be viewed approximately as comprising Al2H7— and Al2H7 moieties. Locating computationally some of the Al4H14— minima on the correlated ab initio potential energy surfaces required the triple-zeta quality basis set to describe adequately the Al multi-coordinate bonding. For the two most stable Al4H14— isomers, the mechanism of their low-barrier interconversion is described. The dissociation of Al4H14— into the Al2H7— and Al2H7 units is predicted to require 20-22 (10-13) kcal mol-1 in terms of ΔH (ΔG) estimated at T = 298.15 K and p = 1 atm. However, Al4H14— is found to be a metastable species in the gas phase: the H2 loss from the radical moiety of its most favorable isomer is exothermic by 18 kcal mol-1 in terms of ΔH (298.15 K) and by 25 kcal mol-1 in terms of ΔG(298.15 K), with the enthalpic/free energy barrier involved being less than 1 kcal mol-1. By contrast with alane Al4H14—, only a weakly bound complex between Ga4H12— and H2 has been identified for the gallium analogue using the relativistic effective core potential

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
    corecore