21 research outputs found

    Sexual niche segregation and gender-specific individual specialisation in a highly dimorphic marine mammal

    Full text link
    While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they all followed the same general dispersion pattern throughout the year

    Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers

    Get PDF
    Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability

    Data from: Mating success and body condition not related to foraging specializations in male fur seals

    No full text
    Individual specialization is widespread among wild populations. While its fitness consequences are central in predicting the ecological and evolutionary trajectories of populations, they remain poorly understood. Long-term individual foraging specializations occur in male Antarctic (Arctocephalus gazella) and Australian (A. pusillus doriferus) fur seals. Strong selective pressure is expected in these highly dimorphic and polygynous species, raising the question of the fitness payoffs associated with different foraging strategies. We investigated the relationship between individual isotopic niche (a proxy of foraging specialization), body size and condition, and an index of reproductive success (harem size) in territorial males. Individuals varied greatly in their skin and fur isotopic values reflecting a range of foraging strategies within the two populations. However, in both species, isotopic niche was not correlated to body size, condition or mating success (R2/ρ < 0.06). Furthermore, no foraging niche was predominant in either species, which would have indicated a substantial long-term fitness benefit of a particular strategy via a higher survival rate. These results suggest that the fitness consequences of a foraging strategy depend not only on the quality of prey and feeding habitat but also on an individual's hunting efficiency and skills

    Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals

    Full text link
    The degree of individual specialization in resource use differs widely among wild populations where individuals range from fully generalized to highly specialized. This interindividual variation has profound implications in many ecological and evolutionary processes. A recent review proposed four main ecological causes of individual specialization: interspecific and intraspecific competition, ecological opportunity and predation. Using the isotopic signature of subsampled whiskers, we investigated to what degree three of these factors (interspecific and intraspecific competition and ecological opportunity) affect the population niche width and the level of individual foraging specialization in two fur seal species, the Antarctic and subantarctic fur seals (Arctocephalus gazella and Arctocephalus tropicalis), over several years. Population niche width was greater when the two seal species bred in allopatry (low interspecific competition) than in sympatry or when seals bred in high-density stabilized colonies (high intraspecific competition). In agreement with the niche variation hypothesis (NVH), higher population niche width was associated with higher interindividual niche variation. However, in contrast to the NVH, all Antarctic females increased their niche width during the interbreeding period when they had potential access to a wider diversity of foraging grounds and associated prey (high ecological opportunities), suggesting they all dispersed to a similar productive area. The degree of individual specialization varied among populations and within the annual cycle. Highest levels of interindividual variation were found in a context of lower interspecific or higher intraspecific competition. Contrasted results were found concerning the effect of ecological opportunity. Depending on seal species, females exhibited either a greater or lower degree of individual specialization during the interbreeding period, reflecting species-specific biological constraints during that period. These results suggest a significant impact of ecological interactions on the population niche width and degree of individual specialization. Such variation at the individual level may be an important factor in the species plasticity with significant consequences on how it may respond to environmental variability

    Data from: Determinants of individual foraging specialisation in large marine vertebrates, the Antarctic and Subantarctic fur seals

    No full text
    1. The degree of individual specialization in resource use differs widely among wild populations where individuals range from fully generalized to highly specialized. This interindividual variation has profound implications in many ecological and evolutionary processes. A recent review proposed four main ecological causes of individual specialization: interspecific and intraspecific competition, ecological opportunity and predation. 2. Using the isotopic signature of subsampled whiskers, we investigated to what degree three of these factors (interspecific and intraspecific competition and ecological opportunity) affect the population niche width and the level of individual foraging specialization in two fur seal species, the Antarctic and subantarctic fur seals (Arctocephalus gazella and Arctocephalus tropicalis), over several years. 3. Population niche width was greater when the two seal species bred in allopatry (low interspecific competition) than in sympatry or when seals bred in high-density stabilized colonies (high intraspecific competition). In agreement with the niche variation hypothesis (NVH), higher population niche width was associated with higher interindividual niche variation. However, in contrast to the NVH, all Antarctic females increased their niche width during the interbreeding period when they had potential access to a wider diversity of foraging grounds and associated prey (high ecological opportunities), suggesting they all dispersed to a similar productive area. 4. The degree of individual specialization varied among populations and within the annual cycle. Highest levels of interindividual variation were found in a context of lower interspecific or higher intraspecific competition. Contrasted results were found concerning the effect of ecological opportunity. Depending on seal species, females exhibited either a greater or lower degree of individual specialization during the interbreeding period, reflecting species-specific biological constraints during that period. 5. These results suggest a significant impact of ecological interactions on the population niche width and degree of individual specialization. Such variation at the individual level may be an important factor in the species plasticity with significant consequences on how it may respond to environmental variability

    Kernaleguen_et_al_JAE_data

    No full text
    Carbon and nitrogen isotopic values of whiskers of Antarctic and subantarctic fur seal females during the pup-rearing and inter-breeding periods

    Kernaléguen et al. 2016 DATA

    No full text
    Data from Mating success and body condition not related to foraging specialisations in male fur seals, L. Kernaléguen, Y. Cherel, C. Guinet and J. P. Y. Arnoul

    Periodicity in whisker δ<sup>13</sup>C and δ<sup>15</sup>N time series using wavelet analysis.

    No full text
    <p>Here we report the number of isotopic time series that exhibited significant cycles either all along the length of the whiskers (at least 80% of the cone of influence (COI), which is the region of the power spectrum that is not affected by the edge effects) or only in a smaller part of the series (between 50 and 80% of the COI). Growth rate was calculated assuming that cycles were annual (see text).</p

    95% (plain line) and 50% (dotted line) utilisation distribution probabilities of males (black line) and females (red line), in June—early July (35 days).

    No full text
    <p>The black dot represents the breeding colony where seals have been captured and grey lines indicate the bathymetry (in 20 m intervals) to the edge of the continental shelf (200 m contour).</p
    corecore