9,286 research outputs found

    Tunneling magnetoresistance in diluted magnetic semiconductor tunnel junctions

    Full text link
    Using the spin-polarized tunneling model and taking into account the basic physics of ferromagnetic semiconductors, we study the temperature dependence of the tunneling magnetoresistance (TMR) in the diluted magnetic semiconductor (DMS) trilayer heterostructure system (Ga,Mn)As/AlAs/(Ga,Mn)As. The experimentally observed TMR ratio is in reasonable agreement with our result based on the typical material parameters. It is also shown that the TMR ratio has a strong dependence on both the itinerant-carrier density and the magnetic ion density in the DMS electrodes. This can provide a potential way to achieve larger TMR ratio by optimally adjusting the material parameters.Comment: 5 pages (RevTex), 3 figures (eps), submitted to PR

    Using Multi-level Convolutional Neural Network for Classification of Lung Nodules on CT images

    Full text link
    © 2018 IEEE. Lung cancer is one of the four major cancers in the world. Accurate diagnosing of lung cancer in the early stage plays an important role to increase the survival rate. Computed Tomography (CT)is an effective method to help the doctor to detect the lung cancer. In this paper, we developed a multi-level convolutional neural network (ML-CNN)to investigate the problem of lung nodule malignancy classification. ML-CNN consists of three CNNs for extracting multi-scale features in lung nodule CT images. Furthermore, we flatten the output of the last pooling layer into a one-dimensional vector for every level and then concatenate them. This strategy can help to improve the performance of our model. The ML-CNN is applied to ternary classification of lung nodules (benign, indeterminate and malignant lung nodules). The experimental results show that our ML-CNN achieves 84.81\% accuracy without any additional hand-craft preprocessing algorithm. It is also indicated that our model achieves the best result in ternary classification

    Deep learning model-aware regulatization with applications to Inverse Problems

    Get PDF
    There are various inverse problems – including reconstruction problems arising in medical imaging - where one is often aware of the forward operator that maps variables of interest to the observations. It is therefore natural to ask whether such knowledge of the forward operator can be exploited in deep learning approaches increasingly used to solve inverse problems. In this paper, we provide one such way via an analysis of the generalisation error of deep learning approaches to inverse problems. In particular, by building on the algorithmic robustness framework, we offer a generalisation error bound that encapsulates key ingredients associated with the learning problem such as the complexity of the data space, the size of the training set, the Jacobian of the deep neural network and the Jacobian of the composition of the forward operator with the neural network. We then propose a ‘plug-and-play’ regulariser that leverages the knowledge of the forward map to improve the generalization of the network. We likewise also use a new method allowing us to tightly upper bound the Jacobians of the relevant operators that is much more computationally efficient than existing ones. We demonstrate the efficacy of our model-aware regularised deep learning algorithms against other state-of-the-art approaches on inverse problems involving various sub-sampling operators such as those used in classical compressed sensing tasks, image super-resolution problems and accelerated Magnetic Resonance Imaging (MRI) setups

    Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters

    Get PDF
    Cache timing attacks use shared caches in multi-core processors as side channels to extract information from victim processes. These attacks are particularly dangerous in cloud infrastructures, in which the deployed countermeasures cause collateral effects in terms of performance loss and increase in energy consumption. We propose to monitor the victim process using an independent monitoring (detector) process, that continuously measures selected Performance Monitoring Counters (PMC) to detect the presence of an attack. Ad-hoc countermeasures can be applied only when such a risky situation arises. In our case, the victim process is the AES encryption algorithm and the attack is performed by means of random encryption requests. We demonstrate that PMCs are a feasible tool to detect the attack and that sampling PMCs at high frequencies is worse than sampling at lower frequencies in terms of detection capabilities, particularly when the attack is fragmented in time to try to be hidden from detection

    In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level

    Get PDF
    The shrinking and swelling of wood due to moisture changes are intrinsic material properties that control and limit the use of wood in many applications. Herein, hygroscopic deformations of normal and compression wood of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) were measured during desorption and absorption processes. The dimensional changes were observed in situ by an environmental scanning electron microscope and analyzed at different hierarchical levels (tissue, cell and cell wall). The relationship between moisture variation and hygroscopic deformation was measured. During initial desorption periods from 95 to 90 or 75% RH, an expansion of the lumen and a shrinkage of the cell wall were observed, revealing a non-uniform and directional deformation of single wood cells. The variation of shrinking or swelling at different hierarchical levels (tissue, cell and cell wall) indicates that the hygroscopic middle lamella plays a role in the deformation at the tissue level. Higher microfibril angles and helical cavities on the cell wall in compression wood correlate with a lower shrinking/swelling ratio. Normal wood showed a more pronounced swelling hysteresis than compression wood, while the sorption hysteresis was almost the same for both wood types. This finding is helpful to elucidate effects of micro- and ultrastructure on sorption. The present findings suggest that the sophisticated system of wood has the abilities to adjust the hygroscopic deformations by fine-tuning its hierarchical structures

    Multi-Level Cross Residual Network for Lung Nodule Classification.

    Full text link
    Computer-aided algorithm plays an important role in disease diagnosis through medical images. As one of the major cancers, lung cancer is commonly detected by computer tomography. To increase the survival rate of lung cancer patients, an early-stage diagnosis is necessary. In this paper, we propose a new structure, multi-level cross residual convolutional neural network (ML-xResNet), to classify the different types of lung nodule malignancies. ML-xResNet is constructed by three-level parallel ResNets with different convolution kernel sizes to extract multi-scale features of the inputs. Moreover, the residuals are connected not only with the current level but also with other levels in a crossover manner. To illustrate the performance of ML-xResNet, we apply the model to process ternary classification (benign, indeterminate, and malignant lung nodules) and binary classification (benign and malignant lung nodules) of lung nodules, respectively. Based on the experiment results, the proposed ML-xResNet achieves the best results of 85.88% accuracy for ternary classification and 92.19% accuracy for binary classification, without any additional handcrafted preprocessing algorithm

    Software fault-tolerance by design diversity DEDIX: A tool for experiments

    Get PDF
    The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described
    • …
    corecore