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Abstract—There are various inverse problems - including
reconstruction problems arising in medical imaging — where one
is often aware of the forward operator that maps variables of
interest to the observations. It is therefore natural to ask whether
such knowledge of the forward operator can be exploited in deep
learning approaches increasingly used to solve inverse problems.

In this paper, we provide one such way via an analysis
of the generalisation error of deep learning approaches to
inverse problems. In particular, by building on the algorithmic
robustness framework, we offer a generalisation error bound that
encapsulates key ingredients associated with the learning problem
such as the complexity of the data space, the size of the training
set, the Jacobian of the deep neural network and the Jacobian of
the composition of the forward operator with the neural network.
We then propose a ‘plug-and-play’ regulariser that leverages the
knowledge of the forward map to improve the generalization of
the network. We likewise also use a new method allowing us to
tightly upper bound the Jacobians of the relevant operators that
is much more computationally efficient than existing ones. We
demonstrate the efficacy of our model-aware regularised deep
learning algorithms against other state-of-the-art approaches on
inverse problems involving various sub-sampling operators such
as those used in classical compressed sensing tasks, image super-
resolution problems and accelerated Magnetic Resonance Imaging
(MRI) setups.

Index Terms—Deep Learning, Generalization Error, Jacobian,
Inverse Problems, Regularization, Robustness

I. INTRODUCTION

In various signal and image processing challenges arising
in practice — including medical imaging, remote sensing, and
many more — one often desires to recover a number of latent
variables from physical measurements. This class of problems
— generally known as inverse problems — can often be modelled
as follows:

y=Ax+n (1)

where y € )Y C RY represents a g-dimensional vector
containing the physical measurements, x € X C RP represents
a p-dimensional vector containing the variables of interest, and
n € N/ C R? is a bounded perturbation modelling measurement
noise. The forward operator modelling the relationship between
physical measurements and variables of interests is in turn
modelled (in the absence of noise) using a matrix A € R7*P,
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This forward operator satisfies certain regularity conditions
whereby Vx;,x5 € X
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where A, represents the maximum singular value of the forward
map A.

Two broad classes of approaches have been adopted to
solve inverse problems: (i) model-based methods and (ii) data-
driven methods. Model-based methods exploit knowledge of
the forward operator and/or the signal/noise model in order to
recover the variables of interest from the measurements [1]].
For example, well-known inverse problem recovery algorithms
often leverage knowledge of data priors capturing stochastic
[2] or geometric structure [3].On the other hand, data-driven
methods do not leverage explicitly the knowledge of the
underlying physical and data models; instead, such methods
rely on the availability of various data pairs (x,y) in order to
learn how to invert the forward operator associated with the
inverse problem [4]. The challenge relates to the fact that these
approaches — specially deep learning ones — typically require
the availability of various training examples that are not always
available in a number of applications such as medical image
analysis. This inevitably hinders the applicability of data-driven
approaches to inverse problems arising in various scientific
and engineering use-cases.

In this paper, our overarching goal is to understand using
first-principles how to use knowledge readily available in
various inverse problems in order to improve the performance
of deep learning based data-driven methods. We approach
this challenge by offering new generalization guarantees that
capture how the generalization ability is affected by various
key quantities associated with the learning problem. Such
interplay then immediately leads to an entirely new model-
aware regularization strategy acting as a proxy to import
knowledge about the underlying physical model onto the deep
learning process.

Concretely, our contributions can be summarized as follows:

« We present generalization error bounds for Deep Neural

Networks (DNN) based inverse problem solvers. Notably,
such bounds depend on various quantities including the
Jacobian matrix of the neural network along with the
Jacobian matrix of the composition of the neural network
with the inverse problem forward map.

« We then propose new regularization strategies that are

capable of using knowledge about the inverse problem

|Ax1 — Axalls < Agllx1 — x2]|2

INote that such forward operators encountered in various applications of
interest including Magnetic resonance Imaging (MRI), Computed Tomography
(CT) etc obey some form of regularity constraint such as given in @



model during the neural network learning process via
the control of the spectral and Frobenius norms of such
Jacobian matrices.

e We also showcase computationally efficient methods
to estimate the spectral and Frobenius norms of the
aforementioned Jacobian matrices in order to accelerate
the neural network learning process.

« Finally, we demonstrate the empirical performance of
our algorithms on various inverse problems with different
degrees of ill-posednesss. These include the reconstruction
of high-dimensional data from low-dimensional noisy mea-
surements where the forward model is either a compressive
random Gaussian matrix, a decimation operator used to
generate low resolution images from the corresponding
high-resolution version, or a subsampling matrix usually
employed in accelarated Magnetic Resonance Imaging
applications.

The remainder of the paper is organized as follows: After
presenting an overview of the related work in Section [II} we
introduce our system setup in Section We then present
generalization bounds applicable to neural network based
inverse problem solvers in Section leading up to model-
aware regularizers in Section [V] Section offers various
experimental results showcasing our model-aware deep learning
approach can lead to substantial gains in relation to model-
agnostic ones. Finally, concluding remarks are drawn in Section
All the proofs are relegated to the appendices.

Notation: We use lower case boldface characters to denote
vectors, upper case boldface characters to represent matrices
and sets are represented by calligraphic font. For example x is
a vector, X is a matrix and X is a set. Ny (9, {2) represents
the covering number of a metric space (X, ¢2) using balls of
radius 4.

II. RELATED WORK

Our work connects to various directions in the literature.

A. Model-based techniques for inverse problems

The main challenge in solving (ill-posed) inverse problems
relates to the fact that — without any prior assumption — it
is not possible to recover the variables of interest from the
observations (even when the forward model is perfectly known).
Classical model-based approaches address this challenge via
the formulation of optimization problems that include two
terms in the objective: (1) a data fidelity term and (2) a data
regularization one. The fidelity term encourages the solution to
be consistent with the observations whereas the regularization
one encourages solutions that conform to a certain postulated
data prior. There are a large number of model-based approaches
in the literature: Popular variational methods use a regularizer
that promotes smoothness of the solutions [5], [6] whereas
sparsity-driven methods use regularizers that promote sparsity
of the solutions in some transform domain [7], [8]], [9]]. In
addition to the challenging task of determining a suitable data
prior, these traditional approaches tend to require relatively
complex solvers inevitably restricting their applicability.

B. Data-driven techniques for inverse problems

The recent years have witnessed a surge of interest in
data-driven approaches — with a focus on deep learning ones
— to solve inverse problems [10]. In particular, inspired by
the success of deep learning in classification tasks, such
approaches typically “solve” an inverse problem by using
a neural network that has learnt how to map the model
output to the model input based on a number of input-output
examples [4]. Such approaches have been applied to a large
number of inverse problems such as image denoising [11],
[12], image super-resolution [13], MRI reconstruction [14],
[15]], CT reconstruction [16], and many more. However, these
data-driven approaches typically require rich enough datasets
— which are not always available in various domains such as
medical imaging — in order to learn how to solve the inverse
problem [17].

C. Model-aware data driven approaches

In view of the fact that the underlying physical model is
known in various scenarios, there has been an increased interest
in model-aware data-driven approaches to inverse problems.
Some approaches leverage knowledge of the forward model to
provide a rough estimate of the inverse problem solution (e.g.
using some form of pseudo-inverse of the forward operator)
that is then further processed using a neural network [[18], [19],
[20].

Another approach that is becoming increasingly popular
relies on algorithm unfolding or unrolling [21]], [22], [23].
By starting with a typical optimization based formulation to
tackle the underlying inverse problem — where knowledge of
the physical model is explicitly used — unfolding then maps
iterative solvers onto a neural network architecture whose
parameters can be further tuned in a data-driven manner.

Finally there is also a new suite of techniques that leverage
the knowledge of forward operator as follows: the reconstruc-
tion of the desired data vector given the measurements vector
is carried out using a (regularized) optimization problem using
the underlying model; however, the regularizer within such an
optimization problem is itself learnt directly from a set of data
examples. One such recent (unsupervised) approach relies on
the use of adversarially learnt data dependent regularizers [24].
Another suite of techniques uses instead data representations
learnt directly from data in any underlying model based
optimization problem. For example, in [25], the authors
propose to learn the underlying low dimensional manifold
of the latent signal of interest using a generative adversarial
network (GAN) allowing them to constrain in any optimization
problem the reconstruction of the original data from the data
measurements to conform to such learnt manifold. While this
method yields powerful representations, its training hinges
upon the acquisition of a sufficient amount of training data
for it to generalize well enough to the test data. A similar
approach which employs the structure of a GAN as an implicit
regularizer was proposed in [26]. The work shows that a hand
crafted network architecture inherently favours solutions that
look like natural images — hence can serve as a suitable prior
in image restoration tasks. Finally there are approaches where



a learned denoising autoencoder is treated as a regularization
step in an iterative reconstruction method [27], [28].

Our work departs from these contributions in the sense that —
whereas we also use a deep network to solve an inverse problem
— we leverage knowledge of the underlying forward operator
model via appropriate regularization strategies deriving from a
principled generalization error analysis. The proposed approach
gives rise to a prior which is tailored to a particular inverse
problem.

D. Other related work

There is also a considerable volume of literature offering
analysis of the generalization ability of deep neural net-
works demonstrating that the generalization error of highly
parametrized models can be bounded in terms of certain
parameter norms [29]], [30]. However, the majority of these
bounds are applicable to classification problems rather than
regression based one

The fact that enforcing Lipschitz regularity in deep neural
networks endows them with several desirable properties is well
recognized [32]-[43]. Several works in literature have demon-
strated a link between improved generalization performance
and constrained gradient norms of DNN classifiers [38], [37].
For example, a small Lipschitz constant has also been shown
to result in better generalization error guarantees [44], [30].
However, many of the existing techniques constrain only the
Lipschitz constants of the layer-wise affine transformations
in the network [32]-[36]]. These approaches do not take into
account the non-linearities in the network and thus under-utilize
the Lipschitz capacity of the network by biasing it to learn
simplistic functions [39].

In this work, motivated by our analysis, we propose to
constrain the spectral norm of the input-output network
Jacobian matrix which serves as a tight upper bound on the
Lipschitz constant of the relevant mapping. We then offer
an algorithm to efficiently estimate it without significantly
increasing the computational overhead. The computation of
the Lipschitz constant has been shown to be infeasible in [35].
Therefore, we propose to instead penalize a tight upper bound
approximation — the spectral norm of the Jacobian matrix on
the available training samples. To the best of our knowledge,
our algorithm is the most efficient method to achieve this.

III. SETUP

We consider the linear observation model in eq. (I, with
the following additional assumptions: the input space X' C RP
is compact with respect to the /> metric; the noise space
N ={n : |n|2 < n} € R? is also compact with respect
to the /5 metric; and the output space — which is defined as
Y={y=Ax+n:x€ X,ne N} CR? - can also be
shown to be compact with respect to the ¢ metric. Finally,
we also define the sample space D = {s = (x,y = Ax+n) :
x € X,n € N} that is compact with respect to the £» metric.

Our approach to solve this problem is based on the standard
supervised learning paradigm. We assume access to a training

2Exceptions include [31], but their results suffered from an exponential
dependence on network depth.

set S = {s; = (x4,y; = AX; + n;)}i<y, consisting of m
data points drawn independently and identically distributed
(IID) from the sample space D according to the unknown data
distribution p, consistent with the forward model in (T).

We use such a training set to learn a hypothesis fs: )Y — X
mapping the measurement variables to variables of interest.
We then use such a hypothesis to map new measurement
variables y € ) to the variables of interest x € X that were
not necessarily originally present in the training set.

We restrict our attention to mappings based on feed-forward
neural networks. Such a feed forward neural network can
be represented as a composition of d layer-wise mappings
delivering an estimate of the variable of interest given the
measurement variable as follows:

fs(y) = (foao-- fo,) (¥;0) 3)

where fs(-) represents the feed-forward neural network, fp, ()
represents the i-th layerwise mapping parameterized by 6;, and
© = {61,...604} is the set of tunable parameters in the neural
network. The parameters of the feed-forward neural network
are typically tuned based on the available training set using a
learning algorithm such as stochastic gradient descent [45]].

One is typically interested in the performance of the learnt
neural network not only on the training data but also on
(previously unseen) testing data. Therefore, it is useful to
quantify the generalization error associated with the learnt
neural network given by:

GE(fS) = ‘leXp(fS) - lemp(fS)‘ “)
where lexp(fs) = Es~p[l(fs,s)] represents the expected error,
lemp(fs) = £ 3=, 1(fs,s;) represents the empirical error, and
the loss function [ : R? x R? — R} — which measures the
discrepancy between the neural network prediction and the
ground truth — is taken to be the /5 distance given by:

I(fs.5) = | fs(y) — ]z 5)
Our ensuing analysis offers bounds to the generalization error
in of deep feed-forward neural networks based inverse
problems solvers as a function of a number of relevant
quantities. These quantities include the covering number of the
sample space D, the size of the training set S, and properties
of the network encapsulated in its input-output Jacobian matrix
given by:

Ofs(y)1 Ofs(y)1
Oy, 8)’(1
I(y) = : :
6fS(Y)p 6fS(Y)p
9y, Oy,

The bounds also depend on quantities associated with the
linear model in eq. (I) such as the forward operator and the
noise bound. Our analysis will therefore also inform how to
import knowledge about the forward-operator associated with
the inverse problem onto the learning procedure in order to
improve the generalization error.



IV. ANALYSIS: GENERALIZATION ERROR BOUNDS

Our analysis builds upon the algorithmic robustness frame-
work in [46].

Definition 1. A learning algorithm is said to be (K, ¢€(S))-
robust if the sample space D can be partitioned into K disjoint
sets K, k = 1,..., K, such that for all s; = (x;,y; =
Ax;+n;)eSandall s=(x,y=Ax+n)eD

si,s € K = |l(fs,si) — U([fs,s)| < e(S) (6)

This notion has already been used to analyse the performance
of deep neural networks in [38], [36], [41]. However, such
analyses applicable to classification tasks do not carry over
immediately to inverse problems based tasks where — in
addition to exploiting knowledge about the forward operator
associated with the inverse problem for the computation of
€(S) and K — there are some technical complications that
may arise due the fact that the loss functions are typically
unbounded ﬂ We begin addressing these challenges by offering
a simple result that showcases how the distance between the
neural network estimates of the variables of interest depends on
the distance between the variables of interest themselves and,
importantly, the Jacobian of the network, the Jacobian of the
composition of the network with the forward model associated
with the inverse problem, and the noise power associated with
the inverse problem.

Theorem 1. Consider a neural network fs(-): Y — X based
solver of the inverse problem in (I), learnt using a training set
S. Then, for any s1 = (X17Y1 = AX1 —|—Il1), So = (Xg,yg =
Axs + ny) € D, it follows that

[ fs(y2) = fs(y1)ll2 < Agoallx2 — x1ll2 + 2nAy

where Af,, and A are upper bounds to the Lipschitz constants
of the neural network and the composition of the neural network
and the forward operator respectively, given by:

Afoa = sup ”J (y) AH2
y€conv(Y)
Ap= sup |J(y)l2 ™
y€conv(Y)
Proof. See Appendix. [

We now state another theorem — building upon Theorem 1
— articulating about the robustness of a deep neural network
based solver of an inverse problem.

Theorem 2. A neural network trained to solve the inverse
problem in (1) based on a training set S is (K, €(S))-robust
such that for any § > 0,

K g NX((Sa 62)
6(5) < 2(1 + Afoa)5 + 2Af77

where Ny (9, ¢2) is the covering number of X.

Proof. See Appendix. O

3Existing work applies to uniformly bounded loss function (e.g. [46], [38]).

We now state our main result relating to the generalization
error of a deep neural network trained to solve an inverse
problem.

Theorem 3. A neural network trained to solve the inverse
problem in based on a training set S consisting of m i.i.d.
training samples obeys with probability 1 — ¢, for any ¢ > 0,
the GE bound given by:

GE(fs) §2(1 + Afoa)6 + 2Af77

+M\/2NX(57 l3) logs) + 2log (1/¢)

for maxg |I(fs,s)| < M < co and any 6 > 0.
Proof. See Appendix. O

One can derive various insights from this theorem that are
applicable to any differentiable feed forward neural network
along with any linear forward map : (1) first, in line with
traditional bounds [29]], [47], the generalization error depends
on the size of training set S; (2) second, in line with more recent
bounds [38]], [36], [31]], the generalization error also depends
on the complexity of the data space D; E] (3) third, although
the ¢5-loss is unbounded in nature, on a compact sample space,
the DNN is able to predict samples such that the loss is finite
and therefore the GE is provably bounded; 4)Finally, Theorem
also reveals that the operator norm of the Jacobian of the
network and the composite map also play a critical role: the
lower the value of these norms, the lower the generalization
error. More importantly, the proposed generalization bound
is also non-vacuous in the network parameters because as
opposed to the product of the norms of layer-wise weight
matrices appearing in other generalization error bounds such as
136, [44], [30], the norm of the network Jacobian matrix does
not seem to exhibit exponential dependence on network depth.
This is in sharp contrast with existing generalization bounds
that typically contain a term that deteriorates exponentially
with depth.

It should also be noted that for the linear inverse problems in
imaging, the input space X can be assumed to be a C); regular
k-dimensional manifold [48]]. The constant C), varies for
different manifolds and represents their “intrinsic” properties.
This is a reasonable assumption for the visual data and has
previously been used to represent such input spaces. The
covering number for such manifolds can be bounded via

(26a)" [@g], @10,

V. MODEL-AWARE JACOBIAN REGULARIZATION

Our approach to leverage knowledge about the inverse
problem model onto the learning process involves regularization.
In particular, Theorem [3] suggests that penalizing the spectral
norm of the Jacobian of the neural network and the spectral
norm of the Jacobian of the composition of the neural network
with the inverse problem forward operator, which — as shown
above — also serve as an upper bound to the Lipschitz constants

4The complexity of the sample space — which can be captured via its covering
number — is often small in view of the fact that in various applications data
lies on a manifold with small intrinsic dimension [38].



of these mappings, should improve the generalization ability
of a neural network based inverse problem solver.

The use of Lipschitz regularization to improve the generaliza-
tion ability of deep neural networks has already been recognized
by various works [36]-[38]. However, the fact that introducing
Lipschitz regularity in the end-to-end mapping involving the
composition of the neural network and the inverse problem
forward map may also control generalization does not appear
to have been acknowledged in previous works. We therefore
propose two model-aware regularization strategies:

Model-Aware Spectral Norm Based Regularization: Our
first regularization strategy directly penalizes the operator norm
of the Jacobians for the neural network and for the composition
of the neural network and the forward map.Training in a
minibatch stochastic gradient setup, where the optimization is
carried out over minibatches B = {si,ss,...,8/3)}, leads to
the following objective:

| B]

Zlfs,sq +h _max  [J(3)Al+5: _max 1)l

|B | =(x, s=(x,y)eB

®)
where (31, B2 are hyper-parameters. Note that S5 = 0 in a noise
free setting.

Model-Aware Frobenius Norm Based Regularization:
Our second regularization strategy stems from the fact that the
Frobenius norm upper bounds the Spectral norm. Regularisation
strategies that punish the Frobenius norm of the network
Jacobian have been associated with significant improvement
in robustness of DNN classifiers [49], [38]], [43]. Therefore,
our cost function in (8) directly gives rise to the following
objective function:

| B]

Zlfs,sq +41_max_ [3(y)Alr+Bz _max [0y ey

|B | &= =(x, s=(x,y)€
)
We, however propose to regularize the following upper bound
on (9) given by:
|B| |B| 1B

A Zl fs:si) +512||J (yi) AHF+/J’22HJ (yo)ll7

(10)
This is mainly because the sum of square of the Frobenius
norm results in simpler gradient computation. Additionally
the regularization terms in can be approximated in a
computationally efficient setting as explained in the sequel.

A. Efficient Computation of the Norms of the Jacobian Based
Regularizers

The challenge associated with the use of the training
objectives in (8) and relates to the computation of the
Spectral norm and Frobenius norm of both J and JA because
computing and storing the Jacobian matrix of deep neural
networks incurs a huge cost. There are already computationally
efficient algorithms to approximate the Frobenius and spectral
norm of the Jacobian [43], [39]]. Here, for completeness, we
illustrate how to re-purpose these algorithms within our set-
up; we also illustrate that these algorithms lead to efficient
approximation.

Algorithm 1: Estimation of the ||[JA|%

Input: Mini-batch B,number of projections 7.
Output: Square of the Frobenius norm of the Jacobian Ap.
Arp + 0
for (y,x) € B do
10
while 7 < n do

L Initialize {z} ~ N(0,1)

z  z/||z]]

Ar  Ar + pllojp(f(y),y,2) - All3/(n|B])

Algorithm 2: Estimation of the spectral norm of JA

Input: Mini-batch B, number of power iterations n.
Output: Maximum singular value, o, of the matrix JA.
for (y,x) € B do
Initialize {u} € R?
10
while 7 < n do
v ATvjp(f(y),y, )
u < jup(f(y),y,Av)
i1+ 1.
o < |lull2/lIv]l2

1) Frobenius Norm Regularization of JA: The random pro-
jection based method proposed in [43] used to approximate the
square of the Frobenius norm of the network Jacobian matrix
J can be immediately extended to approximate the square of
the Frobenius norm of the JA as shown in Algorithm [I| The
technique leverages the reverse mode automatic differentiation
to compute vector Jacobian product — the vjp(-,-, ) — of
random vector sampled from the unit sphere of dimension

— 1 with the network Jacobian. It has been shown in [43]]
that the proposed technique converges to the true value as
O(n~"?) where n is the number of random projections used
for the estimation of the Frobenius norm. The algorithm when
used for regularization, has also been shown to result in only
an inconsequential overhead in compute requirements [43].

2) Spectral Norm Regularization of JA: In turn, the method
in [39] used to approximate the spectral norm of the network
Jacobian J can also be immediately re-purposed to approximate
the spectral norm of JA as shown in Algorithm [2] The
procedure leverages the power method [S0] to approximate
the spectral norm of the Jacobian based regularization terms
in (). It starts by choosing (randomly) an initial (nonzero)
approximation of the left singular vector u in R? associated
with the highest singular value of the matrix JA. It then
leverages the automatic differentiation to iteratively compute
the Jacobian vector product and vector Jacobian product as

follows:
W e[

The spectral norm o is then equal to llull2/|jv|..

The algorithm exploits the reverse and forward mode
automatic differentiation to compute the vector Jacobian
product vjp(-, -, -), and the Jacobian vector products jup(-,-,-)
respectively. All major deep learning frameworks offer support



Algorithm 3: Computation of the jvp.

Input: Mini-batch B, model outputs f(y), vector Av.
Output: JAv

Initialize a dummy tensor d.

g < vjp(f(y),y,d)

u + vjp(g, p,Av)

return u

for the computation of reverse mode vector Jacobian product.

The forward mode Jacobian vector product can easily be
computed via the reverse mode automatic differentiation using
the method described in Algorithm E] [151]].

Note again that the merit of Algorithms [I| and [2] lies in
computing the Frobenius and spectral norms of Jacobians
without explicitly computing the Jacobians themselves that is
prohibitive in high-dimensional settings.

3) Algorithm Accuracy and Complexity: We now study
the efficacy offered by Algorithm [2] via a simple experiment
involving the reconstruction of MNIST data from a noisy
versions.

We generate the noisy MNIST data by passing the clean data
through the linear model in (I} with the forward operator set
to be equal to an identity one. We also further contaminate the
MNIST data with a noise sampled uniformly from a ¢5-sphere
of radius 0.3. We then reconstruct the data from the noisy
version using two neural networks, a 4-layer fully connected

neural network and a 5-layer convolutional neural network.

These networks are trained using ADAM optimizer for 300
epochs using the ¢ loss function in (3).
Our experiments have two main goals:

1) First, we want to test that Algorithm [2| indeed results in
a faithful estimate of the spectral norm of the network
Jacobian. To this end, we compare the output of the
Algorithm 2] with the spectral norm computed using power
method applied to a Jacobian matrix explicitly computed
using Tensorflow. It can be seen in Fig. |1| that for equal
number of power iterations (n = 3) the results obtained
using both methods are almost identical.

2) Second, we want to quantify the computational benefit
afforded to us by Algorithm 2] — owing to its implicit
matrix vector products computation — in contrast to
estimating the spectral norm via explicit matrix vector
products. In particular, Table [l compares computation and
memory requirements of the algorithm against alternatives
associated with the training of both the fully connected
and the convolutional neural networks. It can also be
seen that our algorithm provides considerable gains in
relation to the alternatives. It should be noted the time
and memory requirement for the calculation of Jacobian
of the DnCNN — which is a convolutional neural network
— is higher than those of the FC neural network. This is
because all the major machine learning libraries compute
the gradients backwards from the output to the input using
the chain rule of derivatives — leading to an increase in
the compute and memory requirements for CNNs that
have large layerwise activation sizes.

In summary, both for fully connected and convolutional

TABLE I: Time and memory requirements for training a 4-layer
fully connected NN and 5-layer CNN [12] on the full training set of
MNIST with a batch size of 100 and p = q = 784.

4-layer FC NN 5-layer DnCNN
time memory time memory
Vanilla 29m 595Mb 1h8m 1057Mb
Alg.2f(n =1) 47.5m 659Mb  3h,42m 1825Mb
Alg. 2| (n = 2) 1h,1m 787Mb 5h,4m 2849Mb
Alg. 2| (n = 3) 1h,13m 787Mb  6h,31m 4897Mb
Alg. 2| (n = 4) 1h,18m 787Mb  9h,42m 4897Mb
tf batch J (n = 3) 63h,7m  4659Mb —— ~ 160Gb
140
120
100
80
60
40
0 5‘0 lfl)O 150 260 250 300
Epochs

m— Alg. 2 (n = 4) m— Alg. 2 (N =3) == Algo.2 (n=2) Alg.2 (n=1) == = tf batch ) (n = 3)

Fig. 1: Maximum singular values of the batch Jacobians for a
4-layer fully connected network with p = ¢ = 784.

neural networks, our experiments suggest that regularizing the
network using Algorithm [2| offers considerable computational
gains in comparison to direct computation of the spectral norm.
In fact, the explicit computation of the network Jacobian would
be practically impossible even for a modestly sized network. For
example, for convolutional neural networks, even a minibatch
Jacobian of 10 samples occupies 16GB of memory making it
infeasible to approximate any norm. In contrast, with Algorithm
both jvp and vjp can be computed approximately in linear
time using most major deep learning frameworks.

VI. EXPERIMENTS

We now conduct a series of experiments in order to assess
the efficacy of our proposed model-aware deep learning
regularization strategy on range of popular inverse problems.
These include (a) the reconstruction of images from low-
dimensional Gaussian measurements (b) the generation of
high-resolution images from a low-resolution version and (c)
the reconstruction of MRI images from k-space sub-sampled
measurements. These various inverse problems involve different
measurement operators, exhibiting different condition numbers,
enabling us to verify the merit of our proposed regularizers
under various settings.

A. Image Reconstruction in the Presence of Gaussian Mea-
surements

1) Experimental procedure: Our first set of experiments
involves the reconstruction of images from noisy compressive
Gaussian measurements. In particular, we consider our linear
model in (T) where A is a (wide) random Gaussian matrixP| with

SForward maps generated using these rules fulfil the restricted isometry
property with high probability [52].
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Fig. 2: Reconstruction of MNIST images given Gaussian compressive measurements using a fully connected neural network.
@ (Left) SSIM versus number of Gaussian measurements, (Centre) PSNR versus number of Gaussian measurements, (Right)
GE versus number of Gaussian measurements for various regularization strategies such that = 0.3 and m = 500. Zb) (Left)
SSIM versus number of training examples, (Centre) PSNR versus number of training examples, (Right) GE versus number of
training examples for various regularization strategies such that n = 0.3 and ¢ = 160. (Left) SSIM versus noise level,
(Centre) PSNR versus noise level, (Right) GE versus noise level for various regularization strategies such that m = 500 and

q = 160.

i.i.d. entries sampled from a Gaussian distribution with mean
zero and variance 1/q and the noise is sampled uniformly from
a sphere of radius n ﬂ We consider 28 x 28 greyscale images
of handwritten digits taken from the MNIST dataset [53]. We
construct a dataset {x;,y;}" ; whereby the g-dimensional
measurement vector y; is obtained from the p-dimensional
vector x; — which is derived by converting a 28 x 28 greyscale
image onto a 784 dimensional vector — via the linear model in
(I). We also scale the pixel values in the images to the range
[0, 1] prior to the application of the linear operator.

For the reconstruction of the original images from the
noisy compressive measurements, we consider a 4-layer fully
connected neural network consisting of an input layer of width
equal to the measurement size — ¢, followed by three layers,
each containing neurons equal to the dimension of the ground
truth — p. All the layers except the last one have an associated
Rectified Linear Unit (ReLU) activation function.

The reconstruction network is trained using the ADAM

optimizer for 600 epochs using various regularization strategies.

These strategies include: (a) model aware Spectral norm
regularization of Jacobian in (§) which is denoted by STA&SJ

SWe generate bounded noise to validate our theory. However, our experiments
(not included in the paper) showcase that the proposed regularization strategies
show gains even when the noise is not strictly bounded.

(81,82 > 0) or only SJA (51,832 = 0); (b) model-aware
Frobenius norm regularization in (I0) which is denoted by
FJA&FA (51, B2 > 0) or only FJA (81, 82 = 0); and (c) model
agnostic regularization approaches such as weight decay (WD),
spectral norm regularization of weights (SW) [32], Spectral
norm regularization of Jacobian (SJ) and Frobenius norm
regularization of Jacobian (FJ) [43]. Note that comparing our
regularization strategies with WD, SW, SJ and FJ will allow us
to assess the benefits of model-aware regularization since WD,
SW, SJ and FJ do not take into account the presence of the
linear operator. The regularization parameters appearing in the
various strategies (including 57 and B for our regularizers)
are always fine-tuned using a grid search method.

To assess the efficacy of the proposed regularizers on inverse
problems with different levels of ill-posedness and corruption,
we conduct various experimental studies. Specifically, we
look at the performance of networks trained under different
regularized loss functions when ¢ is varied such that it takes
values in the set {80,160, 320,640} for m = 500 and 7 fixed
at 0.3. Likewise, we also observe the performance of different
regularizers when the noise level 7 is gradually increased
from 0 to 0.6 while keeping m and q fixed at 500 and 160
respectively. Finally we also gauge how different regularizers
behave under the training sets of size 200,400,600 and 800



while keeping ¢ fixed at 160 and n = 0.3.

The reconstruction performance of the various regularization
schemes is compared in terms of the generalization gap
determined using the generalization error in eq. (@) and other
quality metrics such as Structural Similarity Index (SSIM) and
Peak Signal to Noise Ratio (PSNR).

2) Results: Fig.[2] presents a performance comparison of net-
works regularized with our model aware Jacobian regularizers
and the baseline techniques for various training scenarios.

In Fig. 2a we plot the test set SSIM, PSNR and GE
of the reconstructed MNIST images versus the number of
measurements q. It can be seen that our proposed model-
aware strategies lead to performance gains in comparison with
existing ones, where the gains are more pronounced with the
increase in the number of measurements. This shows that —
owing to the explicit exploitation of the forward map — model
aware regularizers are better able to leverage the additional
measurements. The generalization error between the training
and the test set for different measurement sizes also shows
a similar trend with model aware regularizers consistently
outbeating the competing baseline techniques.

In Fig. 2b] we plot the test set SSIM, PSNR and GE of
the reconstructed MNIST images versus number of training
examples. Here again, the regularizers that incorporate the
knowledge of the forward map outperform the regularization
techniques that do not. This result also reinforces the hypothesis
that even in situations where we may only have small number
of training examples, model-aware regularization can result in
a better generalization performance.

Finally, in Fig.|2c| we study the effect of different regularizers
in the presence of different levels of noise. For measurements
with high noise levels, the model agnostic and model aware
regularizers show similar performance. This is because in low
SNR conditions the effect of noise may dominate the effect
of the forward operator. In contrast, for measurements with
low levels of noise, model aware regularizers show superior
performance to the existing model agnostic ones. The GE plot
for these experiments again shows that the proposed regularizers
results in superior generalization behaviour when the noise
levels are low.

It should be noted that SJA&SJA consistently outperforms
FJA&F]J. This is because Frobenius norm regularization min-
imizes the sum of square of all the elements in the matrix —
not taking into account the correlation between the rows of
the Jacobian — and thus is more restrictive than the Spectral
norm regularization.

These results support our analysis that model induced
regularizers improve the performance of neural networks
over model agnostic regularization translating into better
reconstructions.

B. Image Super-resolution

1) Experimental procedure: We now study the performance
of our regularizers on the classical super resolution (SR)
problem involving the recovery of high resolution images
from their low resolution versions. The SR problem can be
mathematically formulated via the linear model in (I)) where n

Algorithm 4: Estimation of the regularization coeffi-

cient 3 for Jacobian regularizer.

Input: magnitude r of the regularization term and [ of the
loss over Mini-batch B, scaling factor
Output: Value of the regularization coefficient

a « floor(log(Y/r)) ;

// 1 is the unregularized

empirical loss Y5>, I(fs,s:)
B« 1%y // The values of 10,20 and 30 were
tested for 7. 20 usually gave the best

results.
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Fig. 3: Generalization error Vs number of epoch plots for the
SR problem using different regularization strategies. (3a) GE
plots for EDSR (left) and WDSR (right) when n = 0. (Top)
p/q = 4 (Bottom) p/q = 2 SR task. GE plots for EDSR
(left) and WDSR (right) when 1 = 3. (Top) »/q = 4 (Bottom)
p/ qg=2.

represents the measurement noise and the forward operator A
can be defined as the product of a blur matrix H € RP*P and
a subsampling matrix L € RP*9. The point spread function
(PSF) of the matrix H can be uniform, Gaussian or bicubic and
is assumed to be known in advance [56]. In our experiments
we sample the noise uniformly from a sphere of radius 7
and assume the PSF to be a 5 x 5 Gaussian kernel. For
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Fig. 4: Sample reconstruction results for the image SR task under a noiseless setting (n = 0). For each sample, the top row
contains HR images recovered using EDSR [54]] and the bottom row contains reconstructions for the WDSR [55]]. (Left to

Right) vanilla, FJ, SJ, FJA and SJA.

our training procedure, we sample images from the BSD300
database [57]. The dataset S = {x;,y;}/*, is generated by
obtaining 128 x 128 x 3 cutouts from these images; vectorizing
them; and then obtaining the g-dimensional measurement y;
via the linear model in (T). The exact value of ¢ depends on the
subsampling ratio P/q. We test our regularizers for subsampling
ratios of 2 and 4. The training set size, m, is fixed to 500
samples, while the regularization parameters are tuned on a
validation set of size 3500. We also apply an adaptive policy
taking into account feedback from training in order to tune the
regularization parameters — as opposed to keeping them fixed

— using the approach summarized in Algorithm Eﬂ

To reconstruct the high resolution (HR) images from the
low resolution (LR) measurements, we train two state-of-
the-art ResNet architectures — the Enhanced Deep Residual
Networks (EDSR) [54] and the Wide Activation Residual
Networks (WDSR) [33]]. These architectures have specially
been designed for solving the SR problem leading up to
exceptional performance on various datasets and SR challenges.
We train these networks using the ADAM optimizer for
600 epochs. In these set of experiments, we compare the
performance of the proposed model aware regularizers in egs.
() and (T0) against their model agnostic counterparts; we

7Our empirical results show that using such an adaptive technique results
in better validation performance and lesser training time. Since this technique
takes into account the training performance to compute the regularization
coefficients at each step and does not rely on a hit and trial method to find the
‘best’ hyperparamter, it results in lesser overall training time for the model.



TABLE II: Reconstruction performance of EDSR and WDSR on various test datasets.

p/q = 2 p/q =4
Set5 Set14 Urban100 Set5 Set14 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Vanilla  32.63 0.902 29.57  0.849 27.44  0.873 25.87 0.701 24.05 0.655 21.43 0.629

o H 32.98 0.913 29.96  0.868 27.92  0.888 26.61 0.731 24.81 0.680 22.28 0.663

I sJ 33.32 0.916 30.33  0.861 28.18 0.885 26.33 0.723 24.54  0.671 22.00 0.650

T FA 33.05 0.913 30.01 0.862 27.91 0.884  26.65 0.729 24.84  0.675 22.29 0.659

(Z) SJIA 33.60 0.922 30.66 0.876 28.68 0.910 26.90 0.745 24.97 0.685 22.37 0.665
- Vanilla  28.60 0.833 26.01 0.744  23.04 0.716 24.75 0.654 23.09 0.575 20.42 0.522
o» F 28.68 0.822 26.23  0.738 23.35 0.720 24.78 0.656 23.12 0.574 20.47  0.522

I sJ 28.72 0.823 26.14 0.737 23.18 0.709 24.98 0.677  23.26 0.592 20.68 0.542

S FJA+F]  20.34  0.848 26.73  0.759 23.98 0.751 25.38 0.680 23.59 0.599 20.80  0.547
SJA+S]  29.50 0.849 26.95 0.768 24.00 0.753 25.50 0.692 23.61 0.603 20.83 0.551

Vanilla  33.76 0.921 30.17  0.869 28.49  0.893 26.19 0.739 24.08 0.670 21.52 0.648

o H 34.20 0.925 30.57 0.877 28.76 0.900 26.80 0.757 24.75 0.685 22.11 0.663

I sJ 34.05 0.928 30.69  0.880 28.88  0.902 26.77  0.752 24.71 0.686 22.10 0.662

T FA 34.25 0.929 30.66 0.881 28.94  0.906 27.00 0.765 24.85 0.689 22.22 0.669

g) SJIA 34.55 0.927 30.79 0.881 29.01 0.905 27.06 0.762 24.89 0.690 22.20 0.665
= Vanilla  28.63 0.827  26.20 0.751 23.27 0.730 24.95 0.666 23.23 0.588 20.53 0.532
» F 29.15 0.841 26.56  0.759 23.85  0.749 25.34 0.699 23.35 0.598 20.74  0.549

I sJ 29.31 0.842 26.64  0.760 23.88 0.752 25.36 0.704 23.39 0.604 20.80  0.558

S FIA+F]  20.73 0.853 26.87 0.762 24.15  0.757  25.52 0.708 23.60 0.607  20.91 0.563
SJIA+S]  29.91 0.858 27.19 0.858 24.37 0.769 25.54 0.711 23.65 0.612 20.93 0.565

also demonstrate with the help of generalization error curves
how incorporating the knowledge of the forward operator also
induces generalization gains.

In order to evaluate the impact of incorporating the knowl-
edge of the forward operator in the proposed regularizers,
we test the performance of our trained networks on various
publicly available datasets such as Set5, Set14 and Urban 100
dataset. The reconstruction performance of the various schemes
is compared in terms of visualizations and quality metrics such
as GE, Structural Similarity Index (SSIM) and Peak Signal to
Noise Ratio (PSNR).

2) Results: In order to investigate the improvement in the
generalization behaviour induced by the proposed model aware
regularizers, we have plotted the GE between the training
and validation set — computed via eq. (@) for solving the SR
tasks in Fig. [3] It can be seen in Figs [3a] and 3b] that for the
subsampling ratio of »/q = 4, the regularization methods which
incorporate the knowledge of the forward operator outperform
the regularization techniques that do not. Our results for the
noise free SR problems when p/q = 2, — presented in Fig|3a|do
not exhibit significant gaps in the generalization performance.
This is expected since for »/¢ = 2, SR is a comparatively easier
recovery problem and therefore exploiting the knowledge of the
forward model may not provide much benefit. However, in the
presence of noise, regularizing the networks shows improved
generalization performance even for /¢ = 2, as shown in
Fig. 3b These results validate our theory that model aware
regularization techniques induce performance gains by reducing
the effect of overfitting — resulting in a better generalization
behaviour.

Fig. @] presents a visual comparison of the outputs achieved
using model aware Jacobian regularizers and the baseline
techniques on various datasets. It can be seen that for both
EDSR and WDSR, our propsed regularized leads to perceptual

gains in contrast to the standard (vanilla) training. Although
the model agnostic regularization techniques also result in
improved visualizations, a close inspection of the recovered
images reveals that the model aware regularizers are able
to recover finer image details. It should be noted that the
reconstruction results are achieved with only 500 training
samples.

Finally, in Table [[I, we demonstrate the effectiveness of the
proposed regularizers on various out of sample datasets. On the
p/q = 2 SR task — in comparison to vanilla training for both the
EDSR and WDSR - the model aware regularization techniques
result in a gain of up to 1.24 dB and 0.04 in terms of the PSNR
and SSIM respectively. The proposed model aware regularizers
also show improvement over their model agnostic counterparts.
A similar trend can be observed in the /g = 4 SR task where
model aware regularizers achieve a performance gain of upto
0.97dB and 0.036 in terms of PSNR and SSIM respectively .
The performance improvement over the vanilla training in the
WDSR network are slightly less pronounced than EDSR but
still noticeable. This is because WDSR is a more competetive
network than EDSR.

These results support our analysis that model induced
regularizers improve the performance of neural networks
over model agnostic regularization translating into better
reconstructions.

C. k-Space Subsampled Measurements

1) Experimental procedure: Our second set of experiments
involves the reconstruction of MRI images from sub-sampled
Fourier measurements. Our linear model is such that the linear
operator in (I) is given by A = F~!MF where F is a
2D Fourier transform matrix, F~! is the 2D inverse Fourier
transform matrix, and the mask M is diagonal matrix containing
binary entries on its diagonal where the fraction of non-zero



entries signify the subsampling ratio s. ﬁ Our linear model
is also such that the noise for each sample in is sampled
uniformly from an ¢y sphere of radius 7.

We construct our dataset by retrospectively under-sampling
the Fourier transform of the ground truth images, obtained
from the NYU fastMRI’s knee database [58]. The subsampling
is achieved by the Cartesian 1D and 2D random sampling
masks in k-space, retaining only 25% and 20% of the total
Fourier samples, respectively. We also normalize the images
to the range [0, 1] before applying the forward transform and
adding noise with level 7 = 5. The training was achieved using
a set of 500 samples and a minibatch of size 5.

We consider the state-of-the-art UNet architecture [59]
under different regularization strategies (including SJA&SJ
and FJA&FJ) to reconstruct the original images from the
noisy under-sampled Fourier measurements. A schematic of
the network architecture is shown in Fig. [5| This network is
trained using the ADAM optimizer for 300 epochs using the
different regularization strategies. However, we only apply the
regularization in 10% of the steps per epoch in order to speed
up the optimization. We also use Algorithm [] to tune the
hyperparameters (5, and [o.

We also consider for comparison purposes competing tech-
niques such as (a) wavelet sparsity regularized reconstruction
[3]]; (b) adversarial regularizers [24]]; and (c) postprocessing via
UNet method [[18]. For a fair comparison, the UNet architecture
and training routines are kept the same for our work and the
postprocessing method. Note also that unlike [18], we train the
post processing UNet on /5 loss function. For the Adversarial
regularization method, we modify the official implementation of
the adversarial regularizer, present on Github [24]], provided by
the authors of the publication to suit the forward model used in
this work. The batch size and other hyperparameters such as the
step size and the choice of the adversarial regularizer network
were kept the same as in the original implementation. Both
the postprocessing and the adversarial regularization method
involve a ‘preprocessing’ step. That is, both techniques obtain
an initial course estimate of the signal of interest by applying
a classical regularized reconstruction method, Af(-) to the
measurement y. For our experiments, we use the output of
the Wavelet sparsity regularized reconstruction method as this
initial estimate.

We compare once again the reconstruction performance of
the various approaches in terms of GE, visualizations and
quality metrics such as Structural Similarity Index (SSIM) and
Peak Signal to Noise Ratio (PSNR).

2) Results: Table compares the performance of the
different reconstruction approaches. The proposed regularizers
consistently outbeat all the other methods in terms of PSNR
and SSIM. The performance gains are more pronounced for
1D sampling mask in view of the fact that these introduce
aliasing artifacts that appear to be better dealt with with our
approaches in relation to competing ones.

8These types of forward mappings are particularly important for applications
such as accelerated MRI reconstruction where the field of view is scanned by
obtaining sparse measurements in k-space domain leading to reduced MRI
acquisition periods.
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Fig. 5: UNet Architecture.

Fig. 6: k-space acquisition masks (Left): Random 2D 5-
fold subsampling mask with the centre fully sampled.(Right)
Random 1D 4-fold subsampling mask.

In Fig. [/l we plot and compare the generalization error per-
formance of the competing deep learning approaches including
reconstruction using an unregularized UNet architecture, UNet
post-processing method [18]] and UNet regularized with our
proposed model aware regularization approaches ﬂ The GE
curves clearly reinforce our theoretical results and demonstrate
that our regularizers results in an improved generalization
behaviour. The networks regularized with SJA&SJ behave
significantly better than the other unregualized networks for
both 2D and 1D mask. However, UNet with FJA&FJ does not
show significant reduction in generalization error in comparison
to the vanilla UNet and UNet postprocessor for the 1D mask.
This may be because the 1D subsampling mask induces the
aliasing artifacts and therefore is potentially a challenging
recovery problem.

Figs. [§] and 0] in turn offer a visual comparison of the quality
of the reconstructed images for the different approaches. It can
be seen that our proposed regularization approaches appear to
lead to better reconstruction quality in relation to the competing
methods. Since the Jacobian regularization method can be di-
rectly used with any deep learning based reconstruction method,
we also include reconstruction results when a postprocessing

9The adversarial regularizer method [24] employs a regularized iterative
gradient descent algorithm to recover the ground truth.



TABLE III: Comparison of different reconstruction metrics using
the different approaches.

2D mask (s = 0.2) 1D mask (s = 0.25)

PSNR SSIM PSNR SSIM

Wavelet sparsity reg 28.49 0.72 24.56 0.50

Adversarial Regularizer [24] 29.89 0.77 25.44 0.54

UNet as post-processor [18] 30.01 0.79 28.36 0.74

UNet w FJA&FJ 30.80 0.80 28.96 0.75

UNet w SJA&SJ 30.89 0.81 29.30 0.78
0.20 0.20
0.15 0.15
g 0.10 /W 3 0.10
0.05 0.05
0.00 0.00

0 100 200 300 0 100 200 300
epochs epochs
= UNet UNet Postprocess = UNet w FJA&F) —— UNet w SJA&S)

Fig. 7: Generalization error plots for the MRI reconstruc-
tion.(left) 2D acquisition mask (s = 0.2) (right) 1D acquisition
mask (s = 0.25).

UNet is regularized via SJA&SJ regularizer. It can be seen that
perceptually the reconstruction achieved through this method
outperforms all the other techniques. However there is no
improvement in terms of PSNR and SSIM over the UNet with
SJA&SJ (without the preprocessing). A close inspection of
the reconstructed images reveals that the proposed method
introduces less artifacts than the other reconstructions.

VII. CONCLUSION

This paper — leveraging knowledge of underlying physical
models — proposes a new deep learning approach to solve
inverse problems. The crux of the approach — stemming
directly from a rigorous generalization error analysis — is
a new neural network learning procedure involving the use
of cost functions in capturing knowledge of the underlying
inverse problem model via appropriate regularization. This
regularizer, owing to its plug-and-play nature can be integrated
into any deep learning based solver of inverse problems
without extra hassle. Empirical results on a variety of problems
have shown that our proposed regularization approach can
outperform considerably standard model agnostic regularizers
and reconstruction schemes specialized for inverse problems.
This work adds to recent ones by showing there is much value
incorporating model knowledge onto data-driven approaches.
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APPENDIX

Proof of Theorem [I} We first note that the line between y; =
Ax; 4+ n; and y, = Axy + ny is given by Oy, + Oy, where
0 € (0,1) and § = 1 — . Let us now define a function h(6)
as follows:

h(0) fs (A

By the generalized fundamental theorem of calculus, it can be
shown that:

= fs(Oy1 + Oys) = (6x1 + 6x2) + On; + 6ny)

fs(y2) — fs(y1) = /0 d};f) do
where
Lh(8) =3 (By1 +0y2) [A (x2 — 1) + (2 — )]

Then, from the sub-multiplicative property of matrix norms, it
is immediate to show that:

[ fs (y2) = fs (y1)ll2
/0 J (§y1 + Hyg) [A (x2 —x1) + (n2 —ny)] db

2

<[ v+ oy A -y
2
4 AlJ(9y1+0y2) (2 = m)ad|
< /01-] (Oy1 + Oy2) Ado ) l[x2 — x1]|2
+ /01-] (Oy1 + Oy2) df ; [ng —mnylf2

It is also possible to show that:

Therefore, given that éyl + fy- is in convex-hull of ) for
6 € [0, 1], it follows immediately that:

(@) 1 _
< / 13 (By. + by) Al2d6
2 0

< sup [|J (Oy1 +0y2) Alls
Y1,y2€Y
0€(0,1]

1
/ J (0_}’1 + ng) Adp
0

|fs(y2) = fs ()l < sup [T (y)All2]lx2 — x1|2
y€E€conv(Y)
+ sup [T (¥)ll2[lnz — nf2
y€E€conv(Y
< sup T (y) Allzflx2 — x|
y€E€conv(Y)
+2n sup Iyl A
y€conv(Y)
where conv()) represents the convex hull of ). O

Proof of Theorem 2] We can construct a finite §-cover X’ =

{xg,i = 1,...,K} of the compact space X with K <
( l3). We can therefore also construct a finite cover
= {s} = (x},Ax}),x}, € X',i = 1,... K} of the space

D—{s:(x,y:Ax+n):xe)\ﬂne/\/’}.

This implies that the sample space D can be partitioned into
K disjoint subsets KC;,i = 1,..., K where K; corresponds
to the Voronoi region of s, = (x},y! = Ax}),x, € &'
Consequently, for a point s = (x,y = Ax + n) taken from

the subset /C; we can guarantee:
Ix; —x[2 <0 12)

= Ax; +1ny) € S and
from a particular subset in

Let us now choose s; (x 1,Y
s2 = (X2,y2 = Axg +ng) € D
our partitioned D. Then,

I(fs,s2) = U(fs,s1)]
= |[lx2 = fs(y2)ll2 = [x1 = fs(y1) 2|

fs(}’1)||2
)
< |[x2 = x1ll2 + Agoallx2 — x1ll2 + Ayl[n2 — 01 |2

(©)
S 2(1 -+ Afoa)(g -+ 2Af7]

INE

[x2 —x1l2 + | fs(y2) —

13)
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where the inequality (a) is due to reverse triangle inequality
and Minkowski-inequality, (b) holds because of Theorem 1.
Finally (c¢) holds due to and because 7 upper bounds the
f5 norm of noise.

We have therefore shown that we can partition the set D
onto K non-overlapping subsets so that if a training sample
s1 € S and another sample s € D belong to the same subset

then (T3) holds O
Proof of Theorem [3] We first establish a simple Lemma.

Lemma 1. The Lipschitz constant of a differentiable function
f on a compact set Z is bounded.

Proof. Let f: RP — R? be a differentiable function, defined
on a compact set Z C RP. Let also g(0) = f(z' +0(z" — 7)),
for some 6 € [0,1], so that g(0) = f(z') and g(1) = f(z")
where z',z” are any two fixed points taken for Z. Then, by
the fundamental theorem of calculus, we have

f@ﬂ—ﬂﬂ3=llﬂf+ﬂf“wﬂwﬂ%—%ﬁ

where J(z) is the Jacobian matrix of f at z.
From the multiplicative property of norms, we also have
that
@)~ 1) < | I/ 2
2

/1 J(z' + 0(z" —2'))do
0

Next, by the triangle inequality for integrals, it can be shown
that
1
/ J(Z +0(z" —2'))do|| < sup ||J(Z +0(z" —2'))|2
0

2 z/ .,z €Z
0€l0,1]

< sup
zEconv(Z)

19(2)]l2

where conv(Z) represents the convex hull of the compact set
Z. Note that the Carathéodory’s theorem of convex hulls can
be used to prove that the convex hull of compact set in a finite
dimensional space RP? is also compact [60].

Next, for a continuous function f defined on a compact set,
there exists a finite \g such that [61], [62].

9 (f(2):)

dz

< Xo (14)

where —2-(f(z);) is the element at row (4, j)-th element of

the Jacobian matrix J. This, then leads to the following

)
sup ¢l J(z)][ee < cpho
zEconv(Z)

@)
sup  [|I(z)]2 <

zEconv(Z)
where (a) is due to the equivalence of matrix norms and c is a
constant dependent on the dimensions of the Jacobian matrix

[63]. Finally the last inequality follows from the definition of
the ||.||co matrix norm [64]]. O

10Note that this bounding technique produces a slightly different bound
than an alternative one where we would bound the second term || fs(y2) —
fs(y1)|l2 on the right hand side of a) by Aflly2 — y1l (instead of
Afoqllx2 — x1]| which is possible via Theorem 1). However, the proposed
bounding technique results in a tighter characterization of €(S) since Afoq =
SUPy cconv(Y) ”J (y)A”2 < SUPy cconv(Y) HJ (Y) HQHAH2 = Aan-

We are now in a position to prove the Theorem. In particular,
it can be shown that the GE of a (K, (S))-robust deep neural
network, with probability greater than 1 — (, obeys [46]

GE < ¢(S)
+Insax|l(f3,s)|\/2K log(2) + 21og(1/¢)

5)

m

We can immediately use the robustness result in Theorem 2
to determine two quantities in this generalization error bound:
€(S) and K. However — in contrast with existing results that
assume that the loss function is uniformly bounded so that
maxs |[(fs,s)] < M < oo (e.g. see [46]) — the loss function
associated with our inverse problem is not necessarily bounded.
However, it is still possible to show that maxg |I(fs,s)] is
finite.

In particular, let us observe that Vs = (x,y),s' = (x',y’) €
D

(fs,s) = U(fs,s)] = |Ix = fs(¥)ll2 = Ix' = fs(¥)]l2]
< lx=x|la + | fs(y) = fs(¥)]l2

a

< s+ Ay — ¥/l

(v)

< (L+Ag)ls =5
where (a) is due to Corollary 2 in [38] and (b) holds because
the metric on D upper bounds the metrics on constituent metric
spaces X and ).

Let us also observe that the Lipschitz constant of the loss
function is finite because — via Lemma [I] — the Lipschitz
constant of the neural network A is also finite.

This immediately implies that the loss function is Lips-
chitz continuous hence continuous, and — by the Extreme
Value theorem [[62] — that it is also bounded on D, so that
maxs |[[(fs,s)] < M < oo.

The Theorem follows immediately from Theorem 2] O
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