967 research outputs found

    Multi-modal hydrogel-based platform to deliver and monitor cardiac progenitor/stem cell engraftment

    Get PDF
    Retention and survival of transplanted cells are major limitations to the efficacy of regenerative medicine, with short-term paracrine signals being the principal mechanism underlying current cell therapies for heart repair. Consequently, even improvements in short-term durability may have a potential impact on cardiac cell grafting. We have developed a multimodal hydrogel-based platform comprised of a poly(ethylene glycol) network cross-linked with bioactive peptides functionalized with Gd(III) in order to monitor the localization and retention of the hydrogel in vivo by magnetic resonance imaging. In this study, we have tailored the material for cardiac applications through the inclusion of a heparin-binding peptide (HBP) sequence in the cross-linker design and formulated the gel to display mechanical properties resembling those of cardiac tissue. Luciferase-expressing cardiac stem cells (CSC-Luc2) encapsulated within these gels maintained their metabolic activity for up to 14 days in vitro. Encapsulation in the HBP hydrogels improved CSC-Luc2 retention in the mouse myocardium and hind limbs at 3 days by 6.5- and 12- fold, respectively. Thus, this novel heparin-binding based, Gd(III)-tagged hydrogel and CSC-Luc2 platform system demonstrates a tailored, in vivo detectable theranostic cell delivery system that can be implemented to monitor and assess the transplanted material and cell retention

    Mitigation-driven translocations: are we moving wildlife in the right direction?

    Get PDF
    Despite rapid growth in the field of reintroduction biology, many lessons learned from scientific research are not being applied to translocations initiated when human land-use conflicts with persistence of a species. Mitigation-driven translocations outnumber and receive better funding than science-based conservation translocations worldwide, yet their conservation benefit is unclear. As mitigation releases are economically motivated, outcomes may diverge greatly from releases designed to serve the biological needs of species. Translocation as a regulatory tool may be ill-fitted to biologically mitigate environmental damage wrought by development. Evidence suggests that many mitigation-driven translocations fail, though application of scientific principles and best-practices could likely increase success. Furthermore, lack of transparency and documentation of outcomes hinder efforts to understand the scope of the problem. If mitigation-driven translocations continue unabated as a part of the growing billion-dollar ecological consulting industry, it is imperative that the scale and effects of these releases are reported and evaluated

    Ownership-dependent mating tactics of minor males of the beetle Librodor japonicus (Nitidulidae) with intra-sexual dimorphism of mandibles

    Get PDF
    Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.</p

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    Parasite Lost: Chemical and Visual Cues Used by Pseudacteon in Search of Azteca instabilis

    Get PDF
    An undescribed species of phorid fly (genus: Pseudacteon) parasitizes the ant Azteca instabilis F Smith, by first locating these ants through the use of both chemical and visual cues. Experiments were performed in Chiapas, Mexico to examine a) the anatomical source of phorid attractants, b) the specific chemicals produced that attract phorids, and c) the nature of the visual cues used by phorids to locate the ants. We determined that phorid-attracting chemicals were present within the dorsal section of the abdomen, the location of the pygidial gland. Further experiments indicate that a pygidial gland compound, 1-acetyl-2-methylcyclopentane, is at least partially responsible for attracting phorid flies to their host. Finally, although visual cues such as movement were important for host location, size and color of objects did not influence the frequency with which phorids attacked moving targets

    Red blood cell glutathione peroxidase activity in female nulligravid and pregnant rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alterations of the glutathione peroxidase enzyme complex system occur in physiological conditions such as aging and oxidative stress consequent to strenuous exercise.</p> <p>Methods</p> <p>Authors optimize the spectrophotometric method to measure glutathione peroxidase activity in rat red blood cell membranes.</p> <p>Results</p> <p>The optimization, when applied to age paired rats, both nulligravid and pregnant, shows that pregnancy induces, at seventeen d of pregnancy, an increase of both reactive oxygen substance concentration in red blood cells and membrane glutathione peroxidase activity.</p> <p>Conclusion</p> <p>The glutathione peroxidase increase in erythrocyte membranes is induced by systemic oxidative stress long lasting rat pregnancy.</p

    From sulphur to perfume: spa and SPA at Monchique, Algarve

    Get PDF
    In the thermal village of Monchique, Algarve, different streams of water-related knowledge and practices coexisted for centuries. Those waters were traditionally known as águas santas (holy waters) and believed to have redemptive healing powers. In the seventeenth century, the Catholic church took control of the place, refashioned the bathing rituals, developed infrastructures and provided assistance to the patients, granting free treatment to the poor. In the nineteenth century, the state replaced the church and imposed that treatments should be provided by professionals trained in the scientific principles of medical hydrology. Secular and scientific as they were, clinical logbooks still allowed for the account of patients that embodied miracle-like redemptive cures ‘at the third bath’. People went to Monchique both for its magic and its medicine, bringing in the body ailments achieved in their lives of hard labour. They also went there for a socialising break while healing. From mendicants to rich landowners, coming mostly from the Algarve and neighbouring Alentejo, they crowded the place in summertime. In the twentieth century, as in other places in continental Europe, the spa evolved into a highly medicalised place that qualified for medical expenses reimbursements, which implied the eclipsing – at least from representation – of its leisure component. In the twenty-first century, a new trend of consumer-centred, market-based, post-water balneology with an emphasis on wellness and leisure reinvented the spa as place for lush and diversified consumption. This article argues that the seemingly contradictory systems (markets and medicine) coexist much in the same way that magic, religion and medicine coexisted in the old water sites. The new SPAs, rather than putting an end to the old spas, have enabled them to survive by reinventing thermal sites as places of attraction and leisure

    Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene content of a diverse group of 183 unique <it>Escherichia coli </it>and <it>Shigella </it>isolates was determined using the Affymetrix GeneChip<sup>® </sup><it>E. coli </it>Genome 2.0 Array, originally designed for transcriptome analysis, as a genotyping tool. The probe set design utilized by this array provided the opportunity to determine the gene content of each strain very accurately and reliably. This array constitutes 10,112 independent genes representing four individual <it>E. coli </it>genomes, therefore providing the ability to survey genes of several different pathogen types. The entire ECOR collection, 80 EHEC-like isolates, and a diverse set of isolates from our FDA strain repository were included in our analysis.</p> <p>Results</p> <p>From this study we were able to define sets of genes that correspond to, and therefore define, the EHEC pathogen type. Furthermore, our sampling of 63 unique strains of O157:H7 showed the ability of this array to discriminate between closely related strains. We found that individual strains of O157:H7 differed, on average, by 197 probe sets. Finally, we describe an analysis method that utilizes the power of the probe sets to determine accurately the presence/absence of each gene represented on this array.</p> <p>Conclusions</p> <p>These elements provide insights into understanding the microbial diversity that exists within extant <it>E. coli </it>populations. Moreover, these data demonstrate that this novel microarray-based analysis is a powerful tool in the field of molecular epidemiology and the newly emerging field of microbial forensics.</p

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
    corecore