28 research outputs found

    Henipavirus Neutralising Antibodies in an Isolated Island Population of African Fruit Bats

    Get PDF
    Isolated islands provide valuable opportunities to study the persistence of viruses in wildlife populations, including population size thresholds such as the critical community size. The straw-coloured fruit bat, Eidolon helvum, has been identified as a reservoir for henipaviruses (serological evidence) and Lagos bat virus (LBV; virus isolation and serological evidence) in continental Africa. Here, we sampled from a remote population of E. helvum annobonensis fruit bats on Annobón island in the Gulf of Guinea to investigate whether antibodies to these viruses also exist in this isolated subspecies. Henipavirus serological analyses (Luminex multiplexed binding and inhibition assays, virus neutralisation tests and western blots) and lyssavirus serological analyses (LBV: modified Fluorescent Antibody Virus Neutralisation test, LBV and Mokola virus: lentivirus pseudovirus neutralisation assay) were undertaken on 73 and 70 samples respectively. Given the isolation of fruit bats on Annobón and their lack of connectivity with other populations, it was expected that the population size on the island would be too small to allow persistence of viruses that are thought to cause acute and immunising infections. However, the presence of antibodies against henipaviruses was detected using the Luminex binding assay and confirmed using alternative assays. Neutralising antibodies to LBV were detected in one bat using both assays. We demonstrate clear evidence for exposure of multiple individuals to henipaviruses in this remote population of E. helvum annobonensis fruit bats on Annobón island. The situation is less clear for LBV. Seroprevalences to henipaviruses and LBV in Annobón are notably different to those in E. helvum in continental locations studied using the same sampling techniques and assays. Whilst cross-sectional serological studies in wildlife populations cannot provide details on viral dynamics within populations, valuable information on the presence or absence of viruses may be obtained and utilised for informing future studies

    Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding

    Get PDF
    Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the adaptive value of this mating system, which includes no “best phenotype” as the quality of two mating partners is primarily linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models

    Sperm Length Variation as a Predictor of Extrapair Paternity in Passerine Birds

    Get PDF
    The rate of extrapair paternity is a commonly used index for the risk of sperm competition in birds, but paternity data exist for only a few percent of the approximately 10400 extant species. As paternity analyses require extensive field sampling and costly lab work, species coverage in this field will probably not improve much in the foreseeable future. Recent findings from passerine birds, which constitute the largest avian order (∼5,900 species), suggest that sperm phenotypes carry a signature of sperm competition. Here we examine how well standardized measures of sperm length variation can predict the rate of extrapair paternity in passerine birds.We collected sperm samples from 55 passerine species in Canada and Europe for which extrapair paternity rates were already available from either the same (n = 24) or a different (n = 31) study population. We measured the total length of individual spermatozoa and found that both the coefficient of between-male variation (CV(bm)) and within-male variation (CV(wm)) in sperm length were strong predictors of the rate of extrapair paternity, explaining as much as 65% and 58%, respectively, of the variation in extrapair paternity among species. However, only the CV(bm) predictor was independent of phylogeny, which implies that it can readily be converted into a currency of extrapair paternity without the need for phylogenetic correction.We propose the CV(bm) index as an alternative measure to extrapair paternity for passerine birds. Given the ease of sperm extraction from male birds in breeding condition, and a modest number of sampled males required for a robust estimate, this new index holds a great potential for mapping the risk of sperm competition across a wide range of passerine birds

    Postcopulatory Sexual Selection Is Associated with Reduced Variation in Sperm Morphology

    Get PDF
    The evolutionary role of postcopulatory sexual selection in shaping male reproductive traits, including sperm morphology, is well documented in several taxa. However, previous studies have focused almost exclusively on the influence of sperm competition on variation among species. In this study we tested the hypothesis that intraspecific variation in sperm morphology is driven by the level of postcopulatory sexual selection in passerine birds.Using two proxy measures of sperm competition level, (i) relative testes size and (ii) extrapair paternity level, we found strong evidence that intermale variation in sperm morphology is negatively associated with the degree of postcopulatory sexual selection, independently of phylogeny.Our results show that the role of postcopulatory sexual selection in the evolution of sperm morphology extends to an intraspecific level, reducing the variation towards what might be a species-specific 'optimum' sperm phenotype. This finding suggests that while postcopulatory selection is generally directional (e.g., favouring longer sperm) across avian species, it also acts as a stabilising evolutionary force within species under intense selection, resulting in reduced variation in sperm morphology traits. We discuss some potential evolutionary mechanisms for this pattern

    Unintended Consequences of Conservation Actions: Managing Disease in Complex Ecosystems

    Get PDF
    Infectious diseases are increasingly recognised to be a major threat to biodiversity. Disease management tools such as control of animal movements and vaccination can be used to mitigate the impact and spread of diseases in targeted species. They can reduce the risk of epidemics and in turn the risks of population decline and extinction. However, all species are embedded in communities and interactions between species can be complex, hence increasing the chance of survival of one species can have repercussions on the whole community structure. In this study, we use an example from the Serengeti ecosystem in Tanzania to explore how a vaccination campaign against Canine Distemper Virus (CDV) targeted at conserving the African lion (Panthera leo), could affect the viability of a coexisting threatened species, the cheetah (Acinonyx jubatus). Assuming that CDV plays a role in lion regulation, our results suggest that a vaccination programme, if successful, risks destabilising the simple two-species system considered, as simulations show that vaccination interventions could almost double the probability of extinction of an isolated cheetah population over the next 60 years. This work uses a simple example to illustrate how predictive modelling can be a useful tool in examining the consequence of vaccination interventions on non-target species. It also highlights the importance of carefully considering linkages between human-intervention, species viability and community structure when planning species-based conservation actions
    corecore