17 research outputs found

    DTPP: Differentiable Joint Conditional Prediction and Cost Evaluation for Tree Policy Planning in Autonomous Driving

    Full text link
    Motion prediction and cost evaluation are vital components in the decision-making system of autonomous vehicles. However, existing methods often ignore the importance of cost learning and treat them as separate modules. In this study, we employ a tree-structured policy planner and propose a differentiable joint training framework for both ego-conditioned prediction and cost models, resulting in a direct improvement of the final planning performance. For conditional prediction, we introduce a query-centric Transformer model that performs efficient ego-conditioned motion prediction. For planning cost, we propose a learnable context-aware cost function with latent interaction features, facilitating differentiable joint learning. We validate our proposed approach using the real-world nuPlan dataset and its associated planning test platform. Our framework not only matches state-of-the-art planning methods but outperforms other learning-based methods in planning quality, while operating more efficiently in terms of runtime. We show that joint training delivers significantly better performance than separate training of the two modules. Additionally, we find that tree-structured policy planning outperforms the conventional single-stage planning approach

    Regulatory Role of MicroRNAs in Brain Development and Function

    No full text
    MicroRNAs (miRNAs) are small non-coding RNA molecules of about 20–22 nucleotides. After their posttranscriptional maturation, miRNAs are loaded into the ribonucleoprotein complex RISC and modulate gene expression by binding to the 3′ untranslated region of their target mRNAs through base-pairing, which in turn triggers mRNA degradation or translational inhibition. There is mounting evidence that miRNAs regulate various biological processes, including cell proliferation, differentiation, and apoptosis. Several studies have shown that miRNAs play an important role in neurogenesis and brain development. This review discusses recent progress on understanding the implication of precisely regulated miRNA expression in normal brain development and function. In addition, it reports known cases of dysregulation of miRNA expression and function implicated in the pathogenesis of neurodevelopmental disorders, craniofacial dysmorphic syndromes, neurodegenerative diseases, and psychiatric disorders. Current knowledge regarding the role of miRNAs in the brain in conjunction with the complex interplay between genetic and epigenetic factors are discussed. © Springer Nature Switzerland AG 2020
    corecore