9,088 research outputs found

    X-Ray Determination of the Variable Rate of Mass Accretion onto TW Hydrae

    Get PDF
    Diagnostics of electron temperature (T_e), electron density (n_e), and hydrogen column density (N_H) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 x 10^{-9} M_{\odot} yr^{-1}, for a stellar magnetic field strength of 600 Gauss and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars

    The Nature of the Hard-X-Ray Emitting Symbiotic Star RT Cru

    Full text link
    We describe Chandra High-Energy Transmission Grating Spectrometer observations of RT Cru, the first of a new sub-class of symbiotic stars that appear to contain white dwarfs (WDs) capable of producing hard X-ray emission out to greater than 50 keV. The production of such hard X-ray emission from the objects in this sub-class (which also includes CD -57 3057, T CrB, and CH Cyg) challenges our understanding of accreting WDs. We find that the 0.3 -- 8.0 keV X-ray spectrum of RT Cru emanates from an isobaric cooling flow, as in the optically thin accretion-disk boundary layers of some dwarf novae. The parameters of the spectral fit confirm that the compact accretor is a WD, and they are consistent with the WD being massive. We detect rapid, stochastic variability from the X-ray emission below 4 keV. The combination of flickering variability and a cooling-flow spectrum indicates that RT Cru is likely powered by accretion through a disk. Whereas the cataclysmic variable stars with the hardest X-ray emission are typically magnetic accretors with X-ray flux modulated at the WD spin period, we find that the X-ray emission from RT Cru is not pulsed. RT Cru therefore shows no evidence for magnetically channeled accretion, consistent with our interpretation that the Chandra spectrum arises from an accretion-disk boundary layer.Comment: 3 figures, accepted for publication in Ap

    Influence of a dynamical gluon mass in the pppp and pˉp\bar{p}p forward scattering

    Get PDF
    We compute the tree level cross section for gluon-gluon elastic scattering taking into account a dynamical gluon mass, and show that this mass scale is a natural regulator for this subprocess cross section. Using an eikonal approach in order to examine the relationship between this gluon-gluon scattering and the elastic pppp and pˉp\bar{p}p channels, we found that the dynamical gluon mass is of the same order of magnitude as the {\it ad hoc} infrared mass scale m0m_{0} underlying eikonalized QCD-inspired models. We argue that this correspondence is not an accidental result, and that this dynamical scale indeed represents the onset of non-perturbative contributions to the elastic hadron-hadron scattering. We apply the eikonal model with a dynamical infrared mass scale to obtain predictions for σtotpp,pˉp\sigma_{tot}^{pp,\bar{p}p}, ρpp,pˉp\rho^{pp,\bar{p}p}, slope Bpp,pˉpB^{pp,\bar{p}p}, and differential elastic scattering cross section dσpˉp/dtd\sigma^{\bar{p}p}/dt at Tevatron and CERN-LHC energies.Comment: 20 pages, 5 figures; misprints corrected and comments added. To appear in Phys. Rev.

    High-Q nested resonator in an actively stabilized optomechanical cavity

    Get PDF
    Experiments involving micro- and nanomechanical resonators need to be carefully designed to reduce mechanical environmental noise. A small scale on-chip approach is to add an additional resonator to the system as a mechanical low-pass filter. Unfortunately, the inherent low frequency of the low-pass filter causes the system to be easily excited mechanically. Fixating the additional resonator ensures that the resonator itself can not be excited by the environment. This, however, negates the purpose of the low-pass filter. We solve this apparent paradox by applying active feedback to the resonator, thereby minimizing the motion with respect the front mirror of an optomechanical cavity. Not only does this method actively stabilize the cavity length, but it also retains the on-chip vibration isolation.Comment: Minor adjustments mad

    Water fragmentation by bare and dressed light ions with MeV energies: Fragment-ion-energy and time-of-flight distributions

    Get PDF
    The energy and time-of-flight distributions of water ionic fragments produced by impact of fast atoms and bare and dressed ions; namely, H+, Li0-3+, C1+, and C2+ are reported in this work. Fragment species as a function of emission energy and time-of-flight were recorded by using an electrostatic spectrometer and a time-of-flight mass spectrometer, respectively. An improved Coulomb explosion model coupled to a classical trajectory Monte Carlo (CTMC) simulation gave the energy centroids of the fragments for the dissociation channels resulting from the removal of two to five electrons from the water molecule. For the energy distribution ranging up to 50 eV, both the experiment and model reveal an isotropic production of multiple charged oxygen ions, as well as hydrogen ions. From the ion energy distribution, relative yields of the dissociation resulting from multiple ionization were obtained as a function of the charge state, as well as for several projectile energies. Multiple-ionization yields with charge state up to 4+, were extracted from the measurements of the time-of-flight spectra, focused on the production of single and multiple charged oxygen ions. The measurements were compared to ion-water collision experiments investigated at the keV energy range available in the literature, revealing differences and similarities in the fragment-ion energy distribution.Fil: Wolff, W.. Universidade Federal do Rio de Janeiro; BrasilFil: Luna, H.. Universidade Federal do Rio de Janeiro; BrasilFil: Schuch, R.. Alba Nova University Center; SueciaFil: Cariatore, Nelson Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Otranto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Turco, Federico. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Bernardi, Guillermo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Suárez, S.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Classical versus Quantum Structure of the Scattering Probability Matrix. Chaotic wave-guides

    Full text link
    The purely classical counterpart of the Scattering Probability Matrix (SPM) Sn,m2\mid S_{n,m}\mid^2 of the quantum scattering matrix SS is defined for 2D quantum waveguides for an arbitrary number of propagating modes MM. We compare the quantum and classical structures of Sn,m2\mid S_{n,m}\mid^2 for a waveguide with generic Hamiltonian chaos. It is shown that even for a moderate number of channels, knowledge of the classical structure of the SPM allows us to predict the global structure of the quantum one and, hence, understand important quantum transport properties of waveguides in terms of purely classical dynamics. It is also shown that the SPM, being an intensity measure, can give additional dynamical information to that obtained by the Poincar\`{e} maps.Comment: 9 pages, 9 figure

    Making On-Demand Routing Efficient with Route-Request Aggregation

    Full text link
    In theory, on-demand routing is very attractive for mobile ad hoc networks (MANET), because it induces signaling only for those destinations for which there is data traffic. However, in practice, the signaling overhead of existing on-demand routing protocols becomes excessive as the rate of topology changes increases due to mobility or other causes. We introduce the first on-demand routing approach that eliminates the main limitation of on-demand routing by aggregating route requests (RREQ) for the same destinations. The approach can be applied to any existing on-demand routing protocol, and we introduce the Ad-hoc Demand-Aggregated Routing with Adaptation (ADARA) as an example of how RREQ aggregation can be used. ADARA is compared to AODV and OLSR using discrete-event simulations, and the results show that aggregating RREQs can make on-demand routing more efficient than existing proactive or on-demand routing protocols

    Basin structure in the two-dimensional dissipative circle map

    Full text link
    Fractal basin structure in the two-dimensional dissipative circle map is examined in detail. Numerically obtained basin appears to be riddling in the parameter region where two periodic orbits co-exist near a boundary crisis, but it is shown to consist of layers of thin bands.Comment: published in J. Phys. Soc. Jpn., 72, 1943-1947 (2003
    corecore