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We compute the tree level cross section for gluon-gluon elastic scattering taking into account a
dynamical gluon mass, and show that this mass scale is a natural regulator for this subprocess cross
section. Using an eikonal approach in order to examine the relationship between this gluon-gluon
scattering and the elastic pp and �pp channels, we found that the dynamical gluon mass is of the same
order of magnitude as the ad hoc infrared mass scale m0 underlying eikonalized QCD-inspired models.
We argue that this correspondence is not an accidental result, and that this dynamical scale indeed
represents the onset of nonperturbative contributions to the elastic hadron-hadron scattering. We apply the
eikonal model with a dynamical infrared mass scale to obtain predictions for �pp; �pptot , �pp; �pp, slope Bpp; �pp,
and differential elastic scattering cross section d� �pp=dt at Tevatron and CERN-LHC energies.
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I. INTRODUCTION

The increase of hadron-hadron total cross sections was
theoretically predicted many years ago [1] and this pre-
diction has been accurately verified by experiment [2]. At
present the main theoretical approaches to explain this
behavior are the Regge pole model and the QCD-inspired
models.

In the Regge pole model the increase of the total cross
section is attributed to the exchange of a colorless state
having the quantum numbers of the vacuum: the Pomeron
[3]. In the QCD framework the Pomeron can be understood
as the exchange of at least two gluons in a color singlet
state [4]. A simple and interesting model for the Pomeron
has been put forward where it is evidenced the importance
of the QCD nonperturbative vacuum [5]. One of the aspects
of this nonperturbative physics appears in an infrared (IR)
gluon mass scale which regulates the divergent behavior of
the Pomeron exchange.

In the QCD-inspired (or ‘‘mini-jet’’) models the increase
of the total cross sections is associated with semihard
scatterings of partons in the hadrons. The energy depen-
dence of the cross sections is driven especially by gluon-
gluon scattering processes, where the behavior of the gluon
distribution function at small x exhibits the power law
g�x;Q2� � x�J (see [6–8] and references therein). In this
case it is the gluon-gluon subprocess cross section that is
potentially divergent at small transferred momenta. The
procedure to regulate this behavior is the introduction of a
purely ad hoc mass scale which separates the perturbative
from the nonperturbative QCD region [9,10]. This mass
scale, as well as the fixed coupling constant present in the
elementary cross sections, are adjusted in order to obtain
the best fits to the experimental data.

On the other hand, several recent works have shown that
the gluon may develop a dynamical mass (see the review
[11] and the earlier work of Ref. [12]). This dynamical
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gluon mass was already successfully introduced in the
Pomeron model of Landshoff and Nachtmann [13].
Hence it is natural to ask if the arbitrary mass scale that
appears in the QCD-inspired models could be explained at
a deeper level in terms of the dynamical gluon mass. This
relation seems to be a plausible possibility and in this paper
we will show that the dynamical gluon mass, as well as the
IR finite coupling constant associated to it [14], are in fact
the natural regulators for the cross sections calculations.
Since the behavior of the running coupling constant is
constrained by the value of the dynamical gluon mass
[12,14], we will be able to substitute the two ad hoc
parameters in the ‘‘mini-jet’’ models [6–8], namely, the
infrared mass scale (m0) and the effective value of the
running coupling constant (�s), by a physically well mo-
tivated one. In this way, beyond the natural interpretation
of the arbitrary infrared mass scale in terms of a dynamical
one, it is possible to decrease the number of parameters in
this line of models.

The paper is organized as follows: In the next section we
introduce a dynamical gluon mass in the gluon-gluon
scattering and compare the result to the standard one
used in QCD-inspired models. In Sec. III we develop a
QCD-inspired eikonal model in the light of the calculation
of Sec. II. Our results are presented in the Sec. IV, where
the best value for the dynamical gluon mass is determined
and used thereafter to determine several quantities of pp
and �pp scattering. In Sec. V we present our conclusions.

II. INFRARED MASS SCALE AND GLUON-GLUON
ELASTIC SCATTERING

In recent years there have been discussions in the litera-
ture about how to merge in a doubtless way the nonpertur-
bative QCD results with the perturbative expansion. It is
worth mentioning that Brodsky has several times called
attention about the possibility to build up a skeleton ex-
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pansion where the nonperturbative information would be
included in vertices and propagators. In particular, the
freezing of the QCD running coupling constant at low
energy scales could allow to capture at an inclusive level
the nonperturbative effects in a reliable way (see, for
instance, Ref. [15]). The freezing of the coupling constant
and the existence of a dynamical gluon mass are intimately
connected [14], therefore they should appear systemati-
cally in this sought expansion.

It is possible that such skeleton expansion could appear
with the use of the pinch technique [16]. With this tech-
nique the nonperturbative behavior of ‘‘gauge invariant’’
propagators and vertices could be computed nonperturba-
tively at one given order and substituted into the perturba-
tive skeleton expansion. The fact that the ‘‘pinch’’ parts
help to form gauge invariant quantities would result in well
behaved matrix elements for the desired expansion.

It is clear that we are still far from the kind of expansion
discussed above, and we have to rely on more phenome-
nological approaches to go forward in this direction. One
attempt to understand the effect of dynamically massive
gluons was performed by Forshaw, Papavassiliou and
Parrinello [17], where they do introduce bare massive
gluons and study the amplitude behavior for some tree
and one-loop level diagrams that could be relevant for
diffractive scattering. In this approach, for example, the
amplitude for the tree level process q �q! gg comes out
with a mass dependence which is washed out in the high-
energy limit, but the massless limit is not recovered due to
the presence of a numerically small mass independent
term. The calculation is instructive but does not reproduce
the high-energy limit of massless gluons with 2 degrees of
freedom, as discussed by Slavnov many years ago [18].
Actually the dynamical masses go to zero at large momenta
and we should expect to recover the elementary cross
sections of perturbative QCD in the high-energy limit.
Following this thought we could say that the sum over
the polarizations should be performed as if the gluons were
massless otherwise we would not map (at high energies)
the desired skeleton expansion into the perturbative QCD
expansion.

According to the above discussion, we cannot work with
a massive Yang-Mills theory or use a massive model where
the third polarization state is provided by a massless scalar
field. Thus, we will just assume a phenomenological pro-
cedure stated many years ago by Pagels and Stokar and
named dynamical perturbation theory (DPT) [19]. The
DPT approximation can be described as follows: ampli-
tudes that do not vanish to all orders of perturbation theory
are given by their free-field values. On the other hand,
amplitudes that vanish in all orders in perturbation theory
as / exp��1=g2� (g is the coupling constant) are retained
at lowest order. In our case this means that the effects of the
dynamical gluon mass in the propagators and vertices will
be retained, and the sum of polarizations will be performed
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for massless (free-field) gluons, because its signal (for
massive gluons) will not vanish from the elementary cross
section. In this approach, the differential elastic cross
section for the process gg! gg is written as

d�̂DPT

dt̂
�ŝ; t̂� �

9� ��2
s

2ŝ2

�
3�

ŝ�4M2
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2
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�3M2
g � ŝ� t̂	2
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(1)

where ��s and M2
g are the expressions for the nonperturba-

tive running coupling constant and for the dynamical gluon
mass, respectively. They were obtained by Cornwall [12]
by means of the pinch technique in order to derive a gauge
invariant Schwinger-Dyson equation for the gluon propa-
gator. These expressions are given by

�� s�q2� �
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 4M2
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; (2)
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4m2
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�2 �

�
�12=11

; (3)

where �0 � 11� 2
3nf (nf is the number of flavors) and

�(� �QCD) is the QCD scale parameter. The latter ex-
pression has been determined as a fit to the numerical
solution for the gluonic Schwinger-Dyson equation in the
case of pure gauge QCD [12]. We also assume that the
introduction of fermions does not change drastically this
behavior. The gluon mass scale mg has to be found phe-
nomenologically, and a typical value is
mg � 500� 200 MeV (for � � 300 MeV) [12,20]. Note
that we present the full gg! gg cross section just for
completeness, where the terms suppressed by powers of ŝ
are not important compared to leading lnŝ perturbative
corrections. However it should be pointed out that up to
now higher order corrections have not been introduced in
these type of models, and this is even more complicated if
we consider the nonperturbative effects that we are intro-
ducing in this work.

A different expression for the dynamical gluon mass can
be found in Ref. [21], given by

M2
g�q

2� �
m4
g

q2 
m2
g
; (4)

which is consistent with the asymptotic behavior ofMg�q
2�

in the presence of the gluon condensates [22]. However, the
calculation of the hadronic cross section does not depend
strongly on the specific form of Mg�q

2�, but more on its IR
value (i.e., the value of mg).

In the limit q2  �2, the dynamical mass Mg�q2� van-
ishes, and the nonperturbative QCD running coupling ��s
matches with the one-loop perturbative QCD one. Thus, in
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the limit of large enough q2, the expression (1) reproduces
its perturbative QCD counterpart:

d�̂QCD

dt̂
�ŝ; t̂��
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�ŝ
 t̂�2


t̂�ŝ
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(5)

To compute (1) we have used a vertex having a momen-
tum dependent running coupling and a massive gluon
propagator in the Feynman gauge, where the sum over
gluon polarizations was performed for massless gluons.

The total cross section �̂�ŝ� �
Rt̂max

t̂min
�d�̂=dt̂�dt̂ for the

subprocess gg! gg, that will be used in the next section
to compose the eikonal term �gg, is obtained by integrating
over 4m2

g � ŝ � t̂ � 0. In setting these kinematical limits
we have neglected the momentum behavior in Eq. (3), as
expected from our discussion on the weak dependence of
hadronic cross sections on the specific form of M2

g�q
2�. A

straightforward calculation yields

�̂DPT�ŝ��
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�ŝ�3m2

g

m2
g

��
: (6)

The asymptotic energy (ŝ) dependence of the total cross
section �̂DPT�ŝ� is of the following form

�̂ DPT�ŝ� �
9� ��2

s

m2
g
: (7)

We notice that the above result is similar to the asymp-
totic expression for the gluon-gluon total elastic cross
section usually adopted in QCD-inspired models (QIM),

�̂ QIM�ŝ� � �gg �
9��2

s

m2
0

; (8)

where the parametersm0 and �s are assumed to be equal to
0:6 GeV and 0:5, respectively [7,8]. We particularly call
attention to these values, because they are of the same
order of magnitude as the dynamical gluon mass scale
(mg) and its frozen IR value of the coupling constant,
obtained in other calculations of strongly interacting pro-
cesses [20]. Therefore, all the point in here is how to
connect these nonperturbative results to the straightfor-
ward perturbative QCD calculations.

III. DYNAMICAL GLUON MASS AND
QCD-INSPIRED EIKONAL MODELS

A consistent calculation of high-energy hadron-hadron
cross sections must be compatible with analyticity and
unitarity constraints. The latter can be automatically sat-
isfied by use of an eikonalized treatment of the semihard
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parton processes. In an eikonal representation, the total,
elastic and inelastic cross sections are given by

�tot�s� � 4�
Z 1

0
bdb�1� e��I�b;s� cos�R�b; s�	; (9)

�el�s� � 2�
Z 1

0
bdbj1� e��I�b;s�
i�R�b;s�j2; (10)

�in�s� � �tot�s� � �el�s� � 2�
Z 1

0
bdb�1� e�2�I�b;s�	;

(11)

respectively, where s is the square of the total center-of-
mass energy and ��b; s� is a complex eikonal function:
��b; s� � �R�b; s� 
 i�I�b; s�. In this formalism, the fac-
tor e�2�I�b;s� in the expression (11) is interpreted as the
probability that neither nucleon is broken up in a collision
at impact parameter b. The ratio � of the real to the
imaginary part of the forward scattering amplitude is given
by

��s� �
Refi

R
bdb�1� ei��b;s�	g

Imfi
R
bdb�1� ei��b;s�	g

; (12)

whereas the nuclear slope B and the differential elastic
scattering cross section are given by

B�s� �

R
b3db�1� ei��b;s�	R
bdb�1� ei��b;s�	

; (13)

and

d�el
dt

�s; t� �
1

2�
j
Z
bdb�1� ei��b;s�	J0�qb�j2; (14)

respectively, where J0�x� is the Bessel function of the first
kind. The eikonal function can be written as a combination
of an even and odd eikonal terms related by crossing
symmetry. In terms of the proton-proton (pp) and
antiproton-proton ( �pp) scatterings, this combination reads
� �pp
pp�b; s� � �
�b; s� � ���b; s�.
Following the work of Block et al. [8], we write the even

eikonal as the sum of gluon-gluon, quark-gluon, and quark-
quark contributions:

�
�b; s� � �qq�b; s� 
 �qg�b; s� 
 �gg�b; s�

� i��qq�s�W�b;$qq� 
 �qg�s�W�b;$qg�


 �gg�s�W�b;$gg�	: (15)

Here W�b;$� is the overlap function at impact parame-
ter space and �ij�s� is the elementary subprocess cross
section of colliding quarks and gluons (i; j � q; g). The
overlap function is usually associated with the Fourier
transform of a dipole form factor,

W�b;$� �
$2

96�
�$b�3K3�$b�; (16)
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where K3�x� is the modified Bessel function of second
kind. The W�b;$� function is normalized so thatR
d2 ~bW�b;$� � 1. The odd eikonal ���b; s�, that ac-

counts for the difference between pp and �pp channels, is
parametrized as

���b; s� � Codd�gg
m0���
s

p ei�=4W�b;$odd�; (17)

where �gg is given by the expression (8) and m0 is an
arbitrary IR mass scale. Codd and $odd are fitting parame-
ters. We borrow this term, with its correct analyticity
property, and write our odd eikonal as

���b; s� � C��
mg���
s

p ei�=4W�b;$��; (18)

where mg is the dynamical gluon mass and the parameters
C� and $� are constants to be fitted. The factor � is
defined as

� �
9� ��2

s�0�

m2
g

; (19)

which is just the expression (7) deprived of any momentum
dependence, with the coupling constant ��s set at its frozen
IR value. This definition of �, when compared with the
�gg one, reveals explicitly the natural relation between the
infrared mass scales m0 and mg.

In the original Block et al. model the eikonal functions
�qq�b; s� and �qg�b; s�, needed to describe the lower-
energy forward data, are parametrized with terms dictated
by the Regge phenomenology. Similarly, we parametrize
our quark-quark and quark-gluon contributions as

�qq�b; s� � i�A
mg���
s

p W�b;$qq�; (20)

�qg�b; s� � i�
�
A0 
 B0 ln

�
s

m2
g

��
W�b;

�����������������
$qq$gg

p
�; (21)

where A, A0, B0,$qq and$gg are fitting parameters. Notice
that in the above expression the inverse size (in impact
parameter)$qg is defined in the same way as in the original
model, i.e., $qg �

�����������������$qq$gg
p . In deriving the expressions

(20) and (21) we have used the fact that the main contri-
bution to the asymptotic behavior of hadron-hadron total
cross sections comes from gluon-gluon semihard colli-
sions, since g�x�  q�x� at small-x values. Therefore it is
enough to build instrumental quark-quark and quark-gluon
parametrizations for the expected high-energy behavior of
the pp and �pp amplitudes and to compute only the gluon-
gluon contribution by means of the calculation procedure
described in the last section. For example, the term
ln�s=m2

g� is naturally explained by the presence of a mas-
sive gluon in the qg! qg subprocess. In this way the
chosen eikonals reflect exactly the terms that come from
such cross section calculations. We also have not consid-
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ered the effect of dynamically generated quark masses in
the subprocesses involving quarks. This approach involves
an extra parameter (mq � 250� 300 MeV), but we be-
lieve that its effect is smaller compared to the dynamical
gluon mass one.

The gluon-gluon contribution dominates at high energy
and determines the asymptotic behavior of the total cross
section. In our model we associate the gluon eikonal term
�gg�b; s� (see the expression (15)) with the cross section
�DPTgg �s�: �gg�b; s� � �DPTgg �s�W�b;$gg�. Hence the gluon
eikonal contribution includes gg! gg subprocesses with
color nonsinglet exchange in all possible channels. The
cross section �DPTgg �s� is written as

�DPTgg �s� � C0
Z 1

4m2
g=s
d)Fgg�)��̂

DPT�ŝ�; (22)

where Fgg�)� is the convoluted structure function for pair
gg, �̂DPT�ŝ� is the subprocess cross section given by ex-
pression (6), and C0 is a fitting parameter. In the above
expression we have introduced the energy threshold ŝ �
4m2

g for the final state gluons, assuming that these are
screened gluons, in a procedure similar to the calculation
of Ref. [23]. The structure function Fgg�)� is written as

Fgg�)� � �g � g	�)� �
Z 1

)

dx
x
g�x�g�

)
x
�; (23)

where g�x� is the gluon distribution function, usually
adopted as

g�x� � Ng
�1� x�5

xJ
; (24)

where J � 1
 , andNg �
1
240 �6� ,��5� ,�:::�1� ,�. In

this definition the term �1=x1
, simulates the effect of
scaling violations in the small x behavior of g�x� [10]. In
the Regge language the quantity J, that controls the asymp-
totic behavior of �tot�s�, is the so called intercept of the
Pomeron. In fact, neglecting the variation with q2 of the
asymptotic expression (7), it is possible to show that

lim
ŝ!1

Z 1

4m2
g=s
d)Fgg�)��̂

DPT�ŝ� �
�
s

4m2
g

�
,
: (25)

Hence the total cross section behaves asymptotically as a
Pomeron power law sJ�1, and a consistent value of J can
be determined by fitting forward quantities data through a
Regge pole model. Recently, by means of an extended
Regge model, some authors have determined the bounds
for the soft Pomeron intercept imposed by the accelerator
and cosmic ray data currently available [24,25]. These
results are consistent with a Pomeron intercept J � 1:085
(specifically, J� 1 � 0:085� 0:006 in the case of con-
strained bounds [25]), and corroborate the choice of the
Pomeron intercept value adopted is this work.

We ensure the correct analyticity properties of our
model amplitudes by substituting s! se�i�=2 throughout
-4



TABLE I. Values of the parameters of the DGM model result-
ing from the global fit to the forward pp and �pp data. The
dynamical gluon mass scale was set to mg � 400 MeV.
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Eqs. (20)–(22). For simplicity, we will refer to our QCD-
inspired model with a dynamical gluon mass simply as the
DGM model.
C0 �12:097� 0:962� � 10�3

$gg [GeV] 0:7242� 0:0172
A 6:72� 0:92
$qq [GeV] 1:0745� 0:0405
A0 �4:491� 0:179� � 10�3

B0 1:08� 0:14
C� 3:17� 0:35
$� [GeV] 0:6092� 0:0884
IV. RESULTS

In all the fits performed in this paper we use a �2 fitting
procedure, where the value of �2

min is distributed as a �2

distribution with N degrees of freedom (DOF). The fits to
the experimental data sets are performed adopting an in-
terval �2 � �2

min corresponding, in the case of normal
errors, to the projection of the �2 hypersurface containing
90% of probability. In the case of the DGM model (8 fitting
parameters) this corresponds to the interval �2 � �2

min �
13:36 [26]. To determine the optimum value for the dy-
namical gluon mass and extract the best phenomenological
values of the DGM model parameters, we follow a two step
process. First, we select specific input values for the dy-
namical gluon mass and carry out global fits to all high-
energy forward pp and �pp scattering data above���
s

p
� 10 GeVand to the elastic differential scattering cross

section for �pp at
���
s

p
� 1:8 TeV. These forward data sets

include the total cross section (�tot), the ratio of the real to
imaginary part of the forward scattering amplitude (�), and
the nuclear slope in the forward direction (B). We use the
data sets compiled and analyzed by the Particle Data Group
[2], to which we add the new E811 data on � �pp

tot and � �pp at���
s

p
� 1:8 TeV [27]. The statistic and systematic errors of

the forward quantities have been added in quadrature. The
input values of the mg have been chosen to lie in the
interval �300 800	 MeV, as suggested by the value mg �

500� 200 usually obtained in other calculations of
strongly interacting processes (see Sec. II). Although no
physical argument ensures that the optimum value of mg
FIG. 1 (color online). The �2=DOF as a function of dynamical
gluon mass mg.
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lies in the chosen input mass interval, our global fit results
indicate a minimum value just about mg � 400 MeV.
These results are shown in Fig. 1, where a general dashed
curve is added to guide the eye. Roughly, taking a 5%
variation on the minimal �2=DOF value indicated by the
general curve, it is possible to estimate a dynamical gluon
mass mg � 400
350

�100 MeV. This result is totally compatible
with the ones of Ref. [13]: mg � 370 MeV.

Next, in order to determine the parameters of the DGM
model, we set the value of the dynamical gluon mass to
mg � 400 MeV (optimal value) and carry out a global fit
only to all high-energy forward pp and �pp scattering data
above

���
s

p
� 10 GeV, not including the elastic differential

scattering cross section d� �pp=dt at
���
s

p
� 1:8 TeV. The

values of the fitted parameters are given in Table I. The
�2=DOF for this global fit was 1.075 for 188 degrees of
freedom. The results of the fits to �tot, � and B for both pp
and �pp channels are displayed in Figs. 2–4, , respectively,
together with the experimental data. Within this procedure,
the Tevatron differential cross section, as well as the
Tevatron-run II and the CERN LHC ones, can be predicted
FIG. 2. Total cross section for pp (solid curve) and �pp (dashed
curve) scattering.
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FIG. 4. Nuclear slope parameter for elastic pp (solid curve)
and �pp (dashed curve) scattering.

FIG. 5. Predictions for the elastic differential scattering cross
sections at

���
s

p
� 1:8; 1:96 and 14 TeV. In our model the channels

pp and �pp are not distinguished at high energies. The data
points are from E710 [28].

FIG. 3. Ratio of the real to imaginary part of the forward
scattering amplitude for pp (solid curve) and �pp (dashed curve)
scattering.
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by the DGM model. These predictions are shown in Fig. 5.
Table II contains predictions for the forward quantities at
these energies, where the quoted errors are the statistical
errors due to the errors in the fitted parameters.
TABLE II. Predictions of the pp and �pp forward scattering
quantities �tot, � and B for the Fermilab Tevatron run-II (TEVII)
and the CERN LHC energies.

TEVII [1.96 TeV] LHC [14 TeV]

�pptot , �
�pp
tot [mb] 75:7� 5:4 102:9� 7:1

�pp, � �pp 0:129� 0:009 0:114� 0:005
Bpp, B �pp �GeV�2	 16:97� 0:99 19:36� 1:12

034019
V. CONCLUSIONS

In this paper we have investigated the influence of an
infrared dynamical gluon mass scale in the calculation of
pp and �pp forward scattering quantities through a QCD-
inspired eikonal model. By means of the dynamical per-
turbation theory (DPT), we have computed the tree level
gg! gg cross section taking into account the dynamical
gluon mass, and have shown that the IR divergences asso-
ciated with the gluon-gluon subprocess cross section are
naturally regulated by this dynamical scale. In order to
make a connection between the total subprocess cross
section �̂gg�ŝ� and the forward pp and �pp quantities, we
have developed a QCD-inspired eikonal model where the
onset of the dominance of gluons in the interaction of high-
energy hadrons is managed by the dynamical gluon mass
scale. Using this formalism it was possible not only to
reduce the number of parameters of the model, but also
to give a consistent physical explanation for each one. For
example, in some recent papers on QCD-inspired models
[7,8], the two arbitrary constants m0 and �s were assumed
to be equal 0:6 GeV and 0:5, respectively; in our approach
the IR value of running coupling constant is driven by the
dynamical gluon mass, i.e., its IR behavior depends on the
value of mg. This connection permit us to decrease the
number of parameters required to describe the hadronic
experimental data.

By means of a global fit to the forward pp and �pp
scattering data and to d� �pp=dt data at

���
s

p
� 1:8 TeV, we

have determined the best phenomenological value of the
dynamical gluon mass, namely mg � 400
350

�100 MeV.
Interestingly enough, this value is of the same order of
magnitude as the value mg � 500� 200 MeV, obtained in
-6



INFLUENCE OF A DYNAMICAL GLUON MASS IN THE . . . PHYSICAL REVIEW D 72, 034019 (2005)
other calculations of strongly interacting processes. This
result corroborates theoretical analysis taking into account
the possibility of dynamical mass generation and show
that, in principle, a dynamical nonperturbative gluon
propagator may be used in calculations as if it were a usual
(derived from Feynman rules) gluon propagator.

With the dynamical gluon mass set at mg � 400 MeV,
we have performed a global fit only to the forward pp and
�pp scattering data, in the same way as is usually performed
in the former QCD-inspired models. Our model allows us
to describe successfully the forward scattering quantities
�tot, � and B, as well as to predict the �pp differential cross
section at

���
s

p
� 1:8 TeV in excellent agreement with the

available experimental data. These results show that the
DGM model is well suited for detailed predictions of the
forward quantities to be measured at higher energies.
In particular, for the total cross sections to be measured
at Tevatron-run II and CERN-LHC energies, the model
predicts the values �tot � 75:7� 5:4 mb and
�tot � 102:9� 7:1 mb, respectively. Our central LHC
value prediction is close to the central one in the
034019
Ref. [8], namely �tot � 108 mb. This relatively small
difference reflects the fact that the dynamical gluon mass
and its associated coupling constant successfully replace
the values of the ad hoc parameters of the former QCD-
inspired models. However, if the pp total cross section is
measured at the LHC with a precision up to 5%, a selection
between these QCD models may be possible.

In summary, we argue that the QCD-inspired eikonal
model with a dynamical IR mass scale provides an useful
phenomenological tool to the study of the hadron-hadron
diffractive scattering, where a purely perturbative QCD
method is inadequate.
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