61 research outputs found

    Azadirachta indica as a public health tool for the control of malaria & other vector-borne diseases.

    Get PDF
    Neem-based products from Azadirachta indica have been successfully used for biological control of pest insects, mites, fungi and soil-borne nematodic root parasites. A large amount of scientific evidence is available on the potential of A. indica as a source for the development of human and animal health products. The authors champion the potential of neem-based products for the control of malaria in endemic countries, where these products are traditionally used. Neem-based larvicides and/or insecticides could complement other malaria control interventions in an integrated approach

    Impact of repeated NeemAzal®-treated blood meals on the fitness of Anopheles stephensi mosquitoes

    Get PDF
    Background: Herbal remedies are widely used in many malaria endemic countries to treat patients, in particular in the absence of anti-malarial drugs and in some settings to prevent the disease. Herbal medicines may be specifically designed for prophylaxis and/or for blocking malaria transmission to benefit both, the individual consumer and the community at large. Neem represents a good candidate for this purpose due to its inhibitory effects on the parasite stages that cause the clinical manifestations of malaria and on those responsible for infection in the vector. Furthermore, neem secondary metabolites have been shown to interfere with various physiological processes in insect vectors. This study was undertaken to assess the impact of the standardised neem extract NeemAzal® on the fitness of the malaria vector Anopheles stephensi following repeated exposure to the product through consecutive blood meals on treated mice. Methods: Batches of An. stephensi mosquitoes were offered 5 consecutive blood meals on female BALB/c mice treated with NeemAzal® at an azadirachtin A concentration of 60, 105 or 150 mg/kg. The blood feeding capacity was estimated by measuring the haematin content of the rectal fluid excreted by the mosquitoes during feeding. The number of eggs laid was estimated by image analysis and their hatchability assessed by direct observations. Results: A dose and frequency dependent impact of NeemAzal® treatment on the mosquito feeding capacity, oviposition and egg hatchability was demonstrated. In the 150 mg/kg treatment group, the mosquito feeding capacity was reduced by 50% already at the second blood meal and by 50 to 80% in all treatment groups at the fifth blood meal. Consequently, a 50 – 65% reduction in the number of eggs laid per female mosquito was observed after the fifth blood meal in all treatment groups. Similarly, after the fifth treated blood meal exposure, hatchability was found to be reduced by 62% and 70% in the 105 and 150 mg/kg group respectively. Conclusions: The findings of this study, taken together with the accumulated knowledge on neem open the challenging prospects of designing neem-based formulations as multi-target phytomedicines exhibiting preventive, parasite transmission-blocking as well as anti-vectorial properties. Keywords: Malaria, Vectors, Neem, Azadirachtin, Transmission-blocking, Anti-vectoria

    In Vivo and In Vitro Activities and ADME-Tox Profile of a Quinolizidine-Modified 4-Aminoquinoline: A Potent Anti-P. falciparum and Anti-P. vivax Blood-Stage Antimalarial.

    Get PDF
    Natural products are a prolific source for the identification of new biologically active compounds. In the present work, we studied the in vitro and in vivo antimalarial efficacy and ADME-Tox profile of a molecular hybrid (AM1) between 4-aminoquinoline and a quinolizidine moiety derived from lupinine (Lupinus luteus). The aim was to find a compound endowed with the target product profile-1 (TCP-1: molecules that clear asexual blood-stage parasitaemia), proposed by the Medicine for Malaria Venture to accomplish the goal of malaria elimination/eradication. AM1 displayed a very attractive profile in terms of both in vitro and in vivo activity. By using standard in vitro antimalarial assays, AM1 showed low nanomolar inhibitory activity against chloroquine-sensitive and resistant P. falciparum strains (range IC50 16-53 nM), matched with a high potency against P. vivax field isolates (Mean IC50 29 nM). Low toxicity and additivity with artemisinin derivatives were also demonstrated in vitro. High in vivo oral efficacy was observed in both P.berghei and P. yoelii mouse models with IC50 values comparable or better than those of chloroquine. The metabolic stability in different species and the pharmacokinetic profile in the mouse model makes AM1 a compound worth further investigation as a potential novel schizonticidal agent

    Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds

    Get PDF
    BACKGROUND: Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernonia amygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodium berghei and to validate the findings on field isolates of Plasmodium falciparum. METHODS: Aqueous (Ver-H2O) and ethanolic (Ver-EtOH) leaf extracts were tested in vivo for activity against sexual and asexual blood stage P. berghei parasites. In vivo transmission blocking effects of Ver-EtOH and Ver-H2O were estimated by assessing P. berghei oocyst prevalence and density in Anopheles stephensi mosquitoes. Activity targeting early sporogonic stages (ESS), namely gametes, zygotes and ookinetes was assessed in vitro using P. berghei CTRPp.GFP strain. Bioassay guided fractionation was performed to characterize V. amygdalina fractions and molecules for anti-ESS activity. Fractions active against ESS of the murine parasite were tested for ex vivo transmission blocking activity on P. falciparum field isolates. Cytotoxic effects of extracts and isolated compounds vernolide and vernodalol were evaluated on the human cell lines HCT116 and EA.hy926. RESULTS: Ver-H2O reduced the P. berghei macrogametocyte density in mice by about 50% and Ver-EtOH reduced P. berghei oocyst prevalence and density by 27 and 90%, respectively, in An. stephensi mosquitoes. Ver-EtOH inhibited almost completely (>90%) ESS development in vitro at 50 μg/mL. At this concentration, four fractions obtained from the ethylacetate phase of the methanol extract displayed inhibitory activity >90% against ESS. Three tested fractions were also found active against field isolates of the human parasite P. falciparum, reducing oocyst prevalence in Anopheles coluzzii mosquitoes to one-half and oocyst density to one-fourth of controls. The molecules and fractions displayed considerable cytotoxicity on the two tested cell-lines. CONCLUSIONS: Vernonia amygdalina leaves contain molecules affecting multiple stages of Plasmodium, evidencing its potential for drug discovery. Chemical modification of the identified hit molecules, in particular vernodalol, could generate a library of druggable sesquiterpene lactones. The development of a multistage phytomedicine designed as preventive treatment to complement existing malaria control tools appears a challenging but feasible goal

    Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of <it>Plasmodium falciparum </it>transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on <it>Plasmodium </it>stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (<it>Azadirachta indica</it>, Meliaceae) seeds, is a promising candidate, inhibiting <it>Plasmodium </it>exflagellation <it>in vitro </it>at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal<sup>®</sup>, an azadirachtin-enriched extract of neem seeds, using the rodent malaria <it>in vivo </it>model <it>Plasmodium berghei</it>/<it>Anopheles stephensi</it>.</p> <p>Methods</p> <p><it>Anopheles stephensi </it>females were offered a blood-meal on <it>P. berghei </it>infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal<sup>® </sup>on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined.</p> <p>Results</p> <p>NeemAzal<sup>® </sup>completely blocked <it>P. berghei </it>development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in <it>Plasmodium </it>gametogenesis and ookinete formation.</p> <p>Conclusions</p> <p>This work demonstrated <it>in vivo </it>transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies.</p

    The Novel bis-1,2,4-Triazine MIPS-0004373 Demonstrates Rapid and Potent Activity against All Blood Stages of the Malaria Parasite

    Get PDF
    Novel bis-1,2,4-triazine compounds with potent in vitro activity against Plasmodium falciparum parasites were recently identified. The bis-1,2,4-triazines represent a unique antimalarial pharmacophore and are proposed to act by a novel but as-yet-unknown mechanism of action. This study investigated the activity of the bis-1,2,4-triazine MIPS-0004373 across the mammalian life cycle stages of the parasite and profiled the kinetics of activity against blood and transmission stage parasites in vitro and in vivo. MIPS-0004373 demonstrated rapid and potent activity against P. falciparum, with excellent in vitro activity against all asexual blood stages. Prolonged in vitro drug exposure failed to generate stable resistance de novo, suggesting a low propensity for the emergence of resistance. Excellent activity was observed against sexually committed ring stage parasites, but activity against mature gametocytes was limited to inhibiting male gametogenesis. Assessment of liver stage activity demonstrated good activity in an in vitro P. berghei model but no activity against Plasmodium cynomolgi hypnozoites or liver schizonts. The bis-1,2,4-triazine MIPS-0004373 efficiently cleared an established P. berghei infection in vivo, with efficacy similar to that of artesunate and chloroquine and a recrudescence profile comparable to that of chloroquine. This study demonstrates the suitability of bis-1,2,4-triazines for further development toward a novel treatment for acute malaria

    Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    Get PDF
    Dengue is a life-threatening viral disease of growing importance, transmitted by Aedes mosquito vectors. The control of mosquito larvae is crucial to contain or prevent disease outbreaks, and the discovery of new larvicides able to increase the efficacy and the flexibility of the vector control approach is highly desirable. Porphyrins are a class of molecules which generate reactive oxygen species if excited by visible light, thus inducing oxidative cell damage and cell death. In this study we aimed at assessing the potential of this photo-mediated cytotoxic mechanism to kill Aedes (Stegomyia) aegypti mosquito larvae. The selected porphyrin molecule, meso-tri(N-methylpyridyl),meso-mono(N-tetradecylpyridyl)porphine (C14 for simplicity), killed the larvae at doses lower than 1 µM, and at light intensities 50–100 times lower than those typical of natural sunlight, by damaging their intestinal tissues. The physicochemical properties of C14 make it easily adsorbed into organic material, and we exploited this feature to prepare an ‘insecticidal food’ which efficiently killed the larvae and remained active for at least 14 days after its dispersion in water. This study demonstrated that photo-sensitizing agents are promising tools for the development of new larvicides against mosquito vectors of dengue and other human and animal diseases
    corecore