12,890 research outputs found

    Effects of Nanosilica Powder from Rice Hull Ash on Seed Germination of Tomato (Lycopersicon esculentum)

    Get PDF
    open5noNanosilica powders were synthesized from rice hull ash (RHA) and their effects on seed germination of tomato plants were investigated. Synthesized nanosilica powder was subjected to various characterization studies for identification of the size, structure, morphology and elemental composition. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) results showed that the nanoparticles were in agglomerated form with an average diameter of 46.5 nm and 40 nm, respectively. X-ray diffractometry (XRD) indicated that nanosilica powder is amorphous in nature. The nanosilica powder was also characterized as having a purity of 98.33% using EDXRF spectroscopy and having a surface area 172.19 m2 g-1 using the Brunauer-Emmett-Teller (BET) method. The study showed that nanosilica powder significantly improved germination parameters such as germination percentage, germination index, vigor index, mean germination time and average shoot length of tomato but not fresh weight and dry weight. The best results were found at 5gL-1 nanosilica powder. The increase over untreated control seeds was 22% for germination percentage, 47% for germination index, 92% for vigor index and 55% for average shoot length with the addition of 5 gL-1 nanosilica powder. Nanosilica powder-mediated improvement of seed germination in tomato suggests a potential application of nanosilica powder in seed germination of the plant. The study can serve as theoretical basis for further agricultural applications of nanosilica powder.openMaria Morissa Lu, Diana Marie De Silva, Engelbert Peralta, Alvin . Fajardo, Milagros PeraltaMaria Morissa, Lu; DE SILVA, DIANA MARIE; Engelbert, Peralta; Fajardo, Alvin.; Milagros, Peralt

    Growth and Yield of Tomato Applied with Silicon Supplements with Varying Material Structures

    Get PDF
    The effect of varying material structure of silicon (Si) supplements on the growth and yield performance of tomato was investigated. The experimental design consisted of three Si sources (nanosilica, microsilica and sodium silicate) at 5 g/L Si concentration. Among the treatments, nanosilica posted the highest increase in tomato plants\u2019 height increment, fresh weights and dry weights of all plant organs, Si concentrations, and yield. Tomato plants grown with nanosilica had increased height increment and fresh weights of roots, stems and leaves by 23%, 48%, 9% and 22%, respectively. Likewise, dry weight contents among individual organs of plants treated with nanosilica showed 40% and 34% significant increase in roots and stems, respectively. Only nanosilica significantly increased the average fruit yield of tomato by 35% as affected by the 23% increase in the average number of fruits per plant. hence, among the treatments investigated, Si supplementation using nanosilica powder is the most effective in improving the growth characteristics and yield of tomato. Si in root samples supplemented with nanosilica was 72%, 105% and 152% larger as compared to microsilica, sodium silicate and control samples, respectively, which led to the conclusion that the nanostructured scale of silicon supplement contribute to the effective uptake of silicon in the tomato plants, thereby improving growth and yield

    Development of polymeric hollow fiber membranes containing catalytic metal nanoparticules.

    Get PDF
    Metal nanoparticles (MNPs) have unique physico-chemical properties advantageous for catalytic applications which differ from bulk material. However, the main drawback of MNPs is their insufficient stability due to a high trend for aggregation. To cope with this inconvenience, the stabilization of MNPs in polymeric matrices has been tested. This procedure is a promising strategy to maintain catalytic properties. The aim of this work is the synthesis of polymer-stabilized MNPs inside functionalized polymeric membranes in order to build catalytic membrane reactors. First, the polymeric support must have functional groups capable to retain nanoparticle precursors (i.e. sulfonic), then, nanoparticles can grow inside the polymeric matrix by chemical reduction of metal ions. Two different strategies have been used in this work. Firstly, polyethersulfone microfiltration hollow fibers have been modified by applying polyelectrolyte multilayers. Secondly, polysulfone ultrafiltration membranes were modified by UV-photografting using sodium p-styrene sulfonate as a vinyl monomer. The catalytic performance of developed hollow fibers has been evaluated by using the reduction of nitrophenol to aminophenol by sodium borohydride. Hollow fiber modules with Pd MNPs have been tested in dead-end and cross-flow filtration. Complete nitrophenol degradation is possible depending on operation parameters such as applied pressure and permeate flux

    Assessment of the quantitative accuracy of Rietveld/XRD analysis of crystalline and amorphous phases in fly ash

    Get PDF
    An internal standard method based on Rietveld/XRD whole-pattern fitting analysis of fly ash is used to assess the quantitative accuracy to determine its crystalline and amorphous phases under various conditions such as internal standards (types, SiO2 or Al2O3 and dosages, 10–50%), incident X-rays (laboratory or synchrotron) and refinement software (GSAS or TOPAS). The results reveal that the quantitative stability is quite sensible to minor phases, identical to the internal standard, in fly ash. Errors positively correlate with the weight fraction of that minor phase and negatively correlate with the dosage of an internal standard and amorphous phase content in fly ash. The original equation for the amorphous phase calculation is not applicable for a case with a higher inherent quartz content (>2.5%) in fly ash while the dosages of the internal standard is lower than 20%. The original equation is modified as proposed. Based on it, the quantitative results of five different patterns report a good reproducibility with the arithmetic mean errors and the standard errors of identified main phases of around 1%.The access to the beamline BL14B1 facilities at the SSRF is appreciated and the support of SSRF management, User Office and beamline staff is highly appreciated. This Research is supported by the National Natural Science Foundation of China (No. 51602126), the National Key Research and Development Plan of China (2016YFB0303505) and the Program for Scientic Research Innovation Team in Colleges and Universities of Shandong Province

    Non-destructive soluble solids content determination for ‘Rocha’ Pear Based on VIS-SWNIR spectroscopy under ‘Real World’ sorting facility conditions

    Get PDF
    In this paper we report a method to determine the soluble solids content (SSC) of 'Rocha' pear (Pyrus communis L. cv. Rocha) based on their short-wave NIR reflectance spectra (500-1100 nm) measured in conditions similar to those found in packinghouse fruit sorting facilities. We obtained 3300 reflectance spectra from pears acquired from different lots, producers and with diverse storage times and ripening stages. The macroscopic properties of the pears, such as size, temperature and SSC were measured under controlled laboratory conditions. For the spectral analysis, we implemented a computational pipeline that incorporates multiple pre-processing techniques including a feature selection procedure, various multivariate regression models and three different validation strategies. This benchmark allowed us to find the best model/preproccesing procedure for SSC prediction from our data. From the several calibration models tested, we have found that Support Vector Machines provides the best predictions metrics with an RMSEP of around 0.82 ∘ Brix and 1.09 ∘ Brix for internal and external validation strategies respectively. The latter validation was implemented to assess the prediction accuracy of this calibration method under more 'real world-like' conditions. We also show that incorporating information about the fruit temperature and size to the calibration models improves SSC predictability. Our results indicate that the methodology presented here could be implemented in existing packinghouse facilities for single fruit SSC characterization.Funding Agency CEOT strategic project UID/Multi/00631/2019 project OtiCalFrut ALG-01-0247-FEDER-033652 Ideias em Caixa 2010, CAIXA GERAL DE DEPOSITOS Fundacao para a Ciencia e a Tecnologia (Ciencia)info:eu-repo/semantics/publishedVersio

    Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    Get PDF
    PURPOSE: The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. METHODS: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient\u27s treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. RESULTS: In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences wer

    Is financial development bad for growth?

    Get PDF

    Is financial development bad for growth?

    Get PDF

    Is financial development bad for growth?

    Get PDF
    corecore