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Abstract 
 
Metal Nanoparticles (MNPs) have unique physico-chemical properties advantageous for catalytic 

applications which differ from bulk material. However, the main drawback of MNPs is their insuffi-

cient stability due to a high trend for aggregation. To cope with this inconvenience, the stabilization 

of MNPs in polymeric matrices has been tested. This procedure is a promising strategy to maintain 

catalytic properties.  

The aim of this work is the synthesis of polymer-stabilized MNPs inside functionalized polymeric 

membranes in order to build catalytic membrane reactors. First, the polymeric support must have 

functional groups capable to retain nanoparticle precursors (i.e. sulfonic), Then, nanoparticles can 

grow inside the polymeric matrix by chemical reduction of metal ions. 

Two different strategies have been used in this work. Firstly, polyethersulfone microfiltration hol-

low fibres have been modified by applying polyelectrolyte multilayers. Secondly, polysulfone ul-



 

trafiltration membranes were modified by UV-photografting using sodium p-styrene sulfonate as a 

vinyl monomer. The catalytic performance of developed hollow fibers has been evaluated by using 

the reduction of nitrophenol to aminophenol by sodium borohydride. Hollow fibre modules with Pd 

MNPs have been tested in dead-end and cross-flow filtration. Complete nitrophenol degradation is 

possible depending on operation parameters such as applied pressure and permeate flux. 
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1 Introduction  

The rejection of synthetic chemicals by man during decades has led to water pollution. Some of 

these polluting molecules with low molecular weight (pesticides, endocrine disruptor, antibiotics,...) 

are hardly removed by the conventional water treatment processes [1,2]. Either the oxidation or the 

reduction of these chemicals by means of soft catalytic reactions might allow the treatment of some 

polluted water if the derived compounds are more easily removable. Furthermore, the combination of 

catalysis and membrane processes may change and separate pollutants through a single step [3].  

Metal nanoparticles have unique physical and chemical properties which differ from bulk metal 

and isolated atoms [4-7]. Catalysis provides a natural application for nanoparticles because their 

large surface area-to-volume ratio allows effective utilization of expensive metals such as Platinum 

Group Metals [8]. Without a suitable support, however, metal particles aggregate, reducing their ef-

fective surface area and increasing the average particle size which is the key parameter that controls 

many of the special properties of nanomaterials [9-11]. To overcome this problem, catalytic nanopar-

ticles have been immobilized on solid supports, e.g., carbon, metal oxides, and zeolites, or stabilized 

by capping ligands that range from small organic molecules to large polymers [4]. From the above 

strategies, encapsulation by polymers seems advantageous because in addition to stabilizing and pro-



 

tecting the particles, polymers offer unique possibilities for modifying both the environment around 

catalytic sites and the access to these sites [12]. Hence, the protective polymer not only influences 

particle size and morphology but can also have a tremendous influence on catalytic activity and/or 

selectivity. Thus, including nanoparticles inside polymeric membrane would yield to a useful mate-

rial for process intensification [3, 13, 14].  

Catalytic polymeric membranes reactor are promising devices for their aptitude to separate the re-

agents and the products [13,15]. 

Among the different existing membrane configurations, hollow fibers (tubular membranes of a 

few millimeters in diameter, with micrometric walls) present the main advantage of having a very 

high-volume area, which allows the manufacture of modules with a large filter surface but with a 

reduced volume [16]. Hollow fibers properties can be tailored by surface modification which can be 

carried out through different techniques such as photochemical modification (photographting), modi-

fication by plasma, or coated with polymers or polyelectrolyte [17,18]. 

For instance, the UV photografting [19-21] technique, based on free radical polymerisation initi-

ated from the membrane, permits to obtain various types of grafted polymeric chains. This kind of 

grafting is very stable due to the covalent bound existing between the grafted polymer and the mem-

brane and it can be very useful for adding chemical functionality at the surface of the membrane. 

This method was initially used for decreasing membrane molecular weight cut-off by adding charged 

sites using charged monomers such as acrylic acid (AA) or styrene sulfonate (SS) [18]. As a result, 

the filtration properties of the membrane were enhanced.  

Besides, another surface modification involves sequential deposition of Polyelectrolyte Multilay-

ers (PEMs), originally described by Decher [22]. These multilayers are prepared by sequential depo-

sition (layer by layer deposition) of low molecular weight polymers with ionic charges (eg sulphonic 

groups, amine groups ...) allowing the presence of either cationic or anionic sites on the external sur-

face of the membrane or in the inside pores  [22-24]. The layers formed by polyelectrolytes of oppo-



 

site charge are attracted to each other by electrostatic interactions, thus creating dense layers. At first, 

PEMs were used for the modification of membranes and their application in improved filtration 

processes, filtered solutes interacting differently with the filtering surface as a function of its electric 

charge [25].  

 

In the present work, we have loaded the charged groups on the membrane with metal ions and 

subsequently reduce these ions to obtain metal nanoparticles (MNPs) by inter-matrix synthesis tech-

nique [5,11,26]. This method for preparing nanoparticles has already been successfully tested for the 

development of new electrochemical sensors [27,28]. Therefore, using polymer grafting or polyelec-

trolyte deposition, highly active catalytic nanoparticles can be included inside hollow fibers mem-

branes to obtain a catalytic membrane reactor [12, 29]. Characterization of the catalytic effect of the 

fibers was performed using a reaction model widely used in the evaluation of new catalysts for reac-

tions in aqueous phase, the reduction of p-nitrophenol in presence of sodium borohydride and metal-

lic catalyst [23]. 

2 Experimental 

2.1 Photografting set-up  

A complete photografting set-up was described in a previous article [20]. Ultrafiltration polysul-

fone hollow fibers (PS-UF-HF) provided by Polymem SA (Fourquevaux, France) were initially wet 

by water, dipped in an aqueous monomer solution, and degassed using N2. N,N’-methylene-bis-

acrylamide (crosslinker), sodium p-styrene sulfonate, and 4-hydroxybenzophenone (photoinitiator) 

were purchased from Aldrich and used as received without further purification. 

The fiber was passed through two UV polychromatic lamps with closed elliptical reflectors 

(model FOZFR 250, λ > 295 nm, I0 = 338 mW·cm-2 for UVB, Hoenle UV France, Lyon, France). The 



 

operating rate can be adjusted between 5 to 20 m·min-1. After irradiation, hollow fibers were care-

fully washed with reverse osmosis treated water.  

As a consequence of this procedure, the chemical modification only occurs on the hollow fiber 

outer surface (outside modified PS-UF-HF). 

 

2.2 Layer-by-Layer Adsorption of Polyelectrolyte  

Polyethersulfone microfiltration hollow fibers (PES-MF-HF) were purchased from MEMBRANA 

GmbH, Germany (MicroPES TF10) and were modified by the polyelectrolyte multilayer technique, 

as described previously [22]. 

A first layer of polyanion (Poltystyrene sulfonate, PSS) was deposited by submerging the PES-

MF-HF into an appropriate solution (PSS 20 mM and NaCl 0.5 M). The linking proceeds by a π−π 

interaction due to aromatic rings. A second layer of polycation (polyallylamine, PAH 20mM and 

NaCl 0.5M) was deposited after rinsing. In this case, hollow fibers are just modificed on the surface 

because the polyelectrolytes can not diffuse to the fiber interior (outside modified PES-MF-HF). 

Alterantively, the inner part of the fiber can also be modified by pumping the polyelectrolyte 

through the membrane (inside/outside modified PES-MS-HF). 

 

2.3 Metal Loading  

2.3 Metal Loading  

The synthesis of MNPs in the grafted polymeric layer of the membrane was carried out in situ by 

a two-step procedure [28]. First, fibers were dipped in a Pd(NH3)4]+2 0.01M solution what yields to 

ion loading in the membrane surface by an ion-exchange reaction (Eq 1). Secondly, metal ions load 

on fibers undergo a reduction with 0.1 M aqueous NaBH4 solution (Eq 2). It is noteworthy that this 

modification was done directly on the fibers which were already in filtration modules. Afterwards, 

fibers were rinsed with pure water. 



 

 

2R–SO3
- Na+ + [Pd(NH3)4]+2 → (R–SO3

−)2 [Pd(NH3)4]+2 + 2Na+.      Eq 1 

(R–SO3
-)2 [Pd(NH3)4]+2 + 2NaBH4 + 6H2O → 2R-SO3

-Na+ + 7H2 + 2B(OH)3 + Pd0  Eq 2 

 

Determination of metal concentrations in aqueous solutions was carried out either by Inductively 

Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) using an Iris Intrepid II XSP spectrome-

ter (Thermo Electron Co.) or by ICP Mass Spectrometry (ICP-MS) using a ThermoElemental ICP-

MS, model PQExcell. In all cases, average uncertainty was <2%.  

Fibers were also modified by deposition of gold nanoparticles prepared ex situ using the citrate 

method, in which sodium citrate serves as both reducing agent and stabilizer [31]. 

 

2.4 Test filtration  

Modified PES-MS-HF were tested in a dead-end fi-tration set up using a single-fiber module 

whereas modified PS-UF-HF were tested in a tangential filtration set up using a laboratory made 

module of 5 fibers. Figure 1 shows the module conception for both filtration procedures. In dead-

end filtration set up, the solution was passed through the membrane at constant pressure and perme-

ated through the membrane. In this case, the solutes which are unable to pass through the membrane 

increase its concentration in solution which may encourage the membrane fouling. In the case of tan-

gential filtration, passage through the membrane is in the perpendicular direction to the flow of solu-

tion to be filtered. This will get two effluents: permeate (which crosses the membrane) and retentate 

(which is retained). The solution tank is driven by a pump and passes through the membrane module 

(permeate) while the other can be recycled back to the tank. This type of configuration is more inter-

esting to reduce the fouling but needs more energy.  

(Figure 1 here) 

2.5 Catalytic reduction of 4-nitrophenol 



 

The catalytic performance of modified hollow fibers has been evaluated by a model reaction, re-

duction of 4-nitrophenol to 4-aminophenol by sodium borohydride (Figure 2). 

(Figure 2 here) 

 

This reaction is quite simple to follow by UV spectroscopy as the solution of 4-nitrophenol is yel-

low and has a maximum absorption between 330 and 400 nm (depending on the pH). The decrease in 

the intensity of this peak is directly connected with the transformation of 4-aminophenol compound 

which absorbs below 300 nm and therefore is colourless. Furthermore, this reaction does not take 

place in the absence of catalyst [23, 32-35]. 

 

3 Results 

3.1 MNPs content in the membrane 

The white hollow fibers turned grey after Pd reduction or pink after Au reduction, which was a 

good qualitative test of nanoparticle formation. ICP-AES and ICP-MS confirmed that the metal load-

ing was about 1.87 μg Pd/cm2 for the modified outside PS-UF-HF membranes, 0.82 μg/cm2 for the 

outside modified PES-MF-HF and 155 μg Au/cm2 for the inside/outside modified PES-MF-HF (sur-

face area refers to the surface of the external hollow fiber skin). These data are in agreement with 

expected results since the modification of membrane inner part with polyelectrolytes allows a higher 

incorporation of metal nanoparticles inside the membrane compared with the surface modification.  

 

3.2 Catalytic reduction of 4-nitrophenol 

UV spectra of solutions of pure 4-nitrophenol, with or without reducing agent and with or without 

bare fiber did not significantly change after 24 hours at room temperature (Figure 3). On the con-

trary, the analysis of the UV spectra of a nitrophenol solution with reducing agent and a fiber with 



 

nanoparticles inside (catalytic surface = 1.6 cm2) demonstrate the catalytic activity of our system 

because the 4-nitrophenol UV absorption peak clearly disappeared after 24 hours and we obtained a 

spectra similar to a solution of 4-nitrophenol. Thus, the catalytic activity of modified fibers contain-

ing nanoparticles was proved impliying that catalytic sites are accessible to the reagents.   

 

(Figure 3 here) 

 

3.3 Catalytic activity test of PSS/PAH/Au inside coated fiber in frontal filtration mode. 

Since, microfiltration membranes allow higher fluxes than ultrafiltration membranes, modified 

PES-MS-HF were tested in dead-end filtration configuration. In this case, fibers were coated using 

the LBL technique and nanoparticles were deposited both on the outside and the inside of the fiber. -

Results of 4-nitrophenol degradation and specific flux over a 2-hour reaction time are plotted respec-

tively in Figure 4 and Figure 5. As it can be seen, a constant yield of more than 95% of 4-

nitrophenol was obtained during the first hour but the effectivity decreased gradually to about 80% 

until the end of the experiment. Figure 5 shows the evolution of the specific flux during the experi-

men and, although the trend is not clear, it looks like the flux slightly increased with the time.  

 

(Figure 4 and figure 5 here) 

 

3.4 Catalytic activity test of PSS/PAH/Pd outside coated fiber in dead end filtration mode. 

Outside modified PES-MF-HF containing in situ prepared Pd nanoparticles were also tested in a 

dead-end filtration set up using a single-fiber module. In this case, with this procedure, it is possible 

to reduce the initial concentration of 4-nitrophenol to less than 5% (95% efficiency) by a single pas-

sage through the catalytic membrane (Figure 6). However, in order to achieve this value it was nec-

essary to wait for about 1 hour and catalytic filtration before this time was less successful. By the 



 

way, we observed that the catalytic efficiency increased with filtration time when flux decreased. 

(Figure 7). 

(Figure 6 and Figure 7 here) 

 

3.5 Catalytic activity test of PSS/Pd outside coated PS-UF-HF in tangential filtration mode. 

In the tangential flow set up, it was possible to reach a conversion of up to 90% in the permeate 

solution compared with the initial concentration in the tank, demonstrating the catalytic activity of 

these membranes in an operation mode closer to a real water treatement (Figure 8). The permeate 

flow rate in this case was quite low (e.g. 0.7 mmol-1.min-1.m-2 at 5 bar) and it was found to be con-

stant after 1 hour of operation, this is why a plateau was observed for every applied pressure. 

 

(Figure 8 here) 

 

4 Discussion 

The observed reduction rates in the tangential or dead-end set up demonstrate the catalytic proper-

ties of the synthesized membranes. These rates are quite important given the relatively low metal 

loading of the membrane. These results can be explained by the important catalytic surface due to the 

absence of aggregation between nanoparticules stabilised by the polymeric matrix and the easy ac-

cess of nitrophenol to catalytic nanoparticles located at the surface of the membrane which occur 

here by convection instead of diffusion. 

First experiments were carried out with the PES-MF-HF coated inside and outside because we ex-

pected high conversion due to the high exchange surface. Although the high conversion obtained 

(100 %) demonstrated the good efficiency of this set up, the fast decrease observed was not expected. 

We account for a possible poisoning of the catalyst due to the by-products of nitrophenol reduction 

reaction which can interfere with the membrane surface. Indeed, although this reaction has been of-



 

ten used as a model for catalytic test due to its simplicity [23,29], the reaction is actually the result of 

a series of steps [37] (Eq 3-5): 

 

R-NO2 +2H+ + 2e- → R-NO + H2O        Eq 3 

R-NO +2H++ 2e- → R-NHOH       Eq 4 

R-NHOH +2H+ + 2e- → R-NH2 + H2O       Eq 5 

 

The reaction intermediates can interact among themselves leading to unwanted polyaromatic spe-

cies (Eq 6 and Eq 7) which migh have an affinity to polysulfone or polyethersulfone membranes, 

yielding to an undesirable absortion. 

 

R-NO + R-NH2 → R-N=N-R + H2O       Eq 6 

R-NO + R-NHOH → R-N=N(O)-R + H2O      Eq 7 

 

In this scenario, the higher the conversion, the higher the catalyst poisoning. For this reason, we 

chose to test a PES-MF-HF only modified in the surface and so less charged in catalyst. The obtained 

conversion is not so high as in the case of the inside/outside modified PES-MF-HF but superior to 

80%. The evolution of this conversion is totally different as we observed an increase of the conver-

sion with the time and a decrease of the flux at the same time. The decrease of the flux with time 

suggests a pore blocage. This blocage can be due to hydrogen produced during the reduction because 

hydrogen bubbles from NaBH4 evolved onto the catalyst surface can possibly block pore and, as a 

consequence, dry some part of the membrane. Thus, aqueous solutions could not penetreate into the 

pore due to the high Laplace pressure.  

On the other hand, the fact that a decrease of the conversion was not observed suggested that there 

was not (or only a minor) poisoining of catalyst. If by-products were synthesized, they were not ac-



 

cumuled on the surface (where the catalyst is located) but inside the membrane, participating eventu-

ally to the membrane fouling. In fact, it was interesting to compare the conversion evolution in rela-

tion to the observed flux. Conversion increased while observed flux decreased (Figure 9). We ex-

plain this result by considering the residential time of the solution in the catalysis layer at the surface 

of the membrane: when the catalyst accessibility is the limiting step, lower fluxes mean higher resi-

dential time what corresponds to a higher conversion. Bearing this in mind, one can suggest that our 

membrane reactor acts as a perfectly agitated reactor where diffusion is negligible compared to con-

vection (here, due to the applied pressure). So, in our experimental conditions, we can assume that 

the reaction rate is low in front of the value of the flux of reactants. 

 

(Figure 9 here) 

 

Finally, tangential filtration mode was expected to prevent fouling and to lead to a more stable 

process but obtained results didn’t show a clear tendance. As observed in Figure 8, the efficiency of 

the process increased with the applied pressure and so did the permeate flux. Contrary to the dead-

end filtration configuration, here better efficiencies were obtained for higher fluxes. Moreover, con-

version seemed to be stable during the time but the production of hydrogen inside the tank during the 

experiment (due to the poor stability of NaBH4 in solution [36, 37]) jeopardizes the applicatibility of 

this configuration in a real water treatment application. Gas-liquid contactors configuration could be 

a better mode to work with this kind of modified fibers. 

  

5 Conclusions 

Hollow fibers modules have been tested in both dead-end and cross-flow filtration setups, and the 

experimental results show that complete 4-nitrophenol degradation is possible by optimizing opera-



 

tion parameters such as applied pressure and permeate flux. This reaction was selected just to 

demosntrate the potentiality of these new modified membranes. 

Dead-end filtration appears to be more efficient that tangential filtration mode due to the easiest 

reaction and filtration control conditions. However, system configuration needs to be improved since 

it is necessary to purge H2 bubbles formed inside the module which can displace water avoiding a 

good contact between the membrane and the solution. Almost total conversion is promising for fu-

ture applications, but flux must be increased. 
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