298 research outputs found

    Trial protocol of an open label pilot study of lisdexamfetamine for the treatment of acute methamphetamine withdrawal

    Full text link
    Introduction Methamphetamine (MA) use disorder is an important public health concern. MA withdrawal is often the first step in ceasing or reducing use. There are no evidence-based withdrawal treatments, and no medication is approved for the treatment of MA withdrawal. Lisdexamfetamine (LDX) dimesilate, used in the treatment of attention deficit hyperactivity disorder and binge eating disorder has the potential as an agonist therapy to ameliorate withdrawal symptoms, and improve outcomes for patients. Methods A single arm, open-label pilot study to test the safety and feasibility of LDX for the treatment of MA withdrawal. Participants will be inpatients in a drug and alcohol withdrawal unit, and will receive a tapering dose of LDX over five days: 250mg LDX on Day 1, reducing by 50mg per day to 50mg on Day 5. Optional inpatient Days 6 and 7 will allow for participants to transition to ongoing treatment. Participants will be followed-up on Days 14, 21 and 28. All participants will also receive standard inpatient withdrawal care. The primary outcomes are safety (measured by adverse events, changes in vital signs, changes in suicidality and psychosis) and feasibility (the time taken to enrol the sample, proportion of screen / pre-screen failures). Secondary outcomes are acceptability (treatment satisfaction questionnaire, medication adherence, concomitant medications, qualitative interviews), retention to protocol (proportion retained to primary and secondary endpoints), changes in withdrawal symptoms (Amphetamine Withdrawal Questionnaire) and craving for MA (visual analogue scale), and sleep outcomes (continuous actigraphy and daily sleep diary). Discussion This is the first study to assess lisdexamfetamine for the treatment of acute MA withdrawal. If safe and feasible results will go to informing the development of multi-centre randomised controlled trials to determine the efficacy of the intervention

    Nesiritide: Harmful or Harmless?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90328/1/phco.26.10.1465.pd

    Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.

    Get PDF
    In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification

    Bedside Interactions from the Other Side of the Bedrail

    Full text link
    To assess the importance to patients of various aspects of bedside interactions with physician teams. Design : Cross-sectional survey. Setting : VA hospital. Patients : Ninety-seven medical inpatients. Intervention : Survey of 44 questions including short answer, multiple choice, and Likert-type questions. Measurements and Main Results : Data analysis included descriptive statistics. The sample was predominantly male, with a mean age of 62. Overall satisfaction with the hospital experience and with the team of doctors were both high (95% and 96% reported being very or mostly satisfied, respectively). Patients reported learning about several issues during their interactions with the teams; the 3 most highly rated areas were new problems, tests that will be done, and treatments that will be done. Most patients (76%) felt that their teams cared about them very much. Patients were made comfortable when the team showed that they cared, listened, and appeared relaxed (reported by 63%, 57%, and 54%, respectively). Patients were made uncomfortable by the team using language they did not understand (22%) and when several people examined them at once (13%). Many (58%) patients felt personally involved in teaching. The majority of patients liked having medical students and residents involved in their care (69% and 64%, respectively). Conclusions : Patients have much to teach about what is important about interacting with physician teams. Although patients' reactions to team interactions are generally positive, patients are different with respect to what makes them comfortable and uncomfortable. Taking their preferences into account could improve the experience of being in a teaching hospital.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75456/1/j.1525-1497.2005.40192.x.pd

    Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Status epilepticus (SE) induces severe vasogenic edema in the piriform cortex (PC) accompanied by neuronal and astroglial damages. To elucidate the mechanism of SE-induced vasogenic edema, we investigated the roles of tumor necrosis factor (TNF)-α in blood-brain barrier (BBB) disruption during vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced SE.</p> <p>Methods</p> <p>SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, and soluble TNF p55 receptor (sTNFp55R) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunits.</p> <p>Results</p> <p>Following SE, most activated microglia showed strong TNF-α immunoreactivity. In addition, TNF p75 receptor expression was detected in endothelial cells as well as astrocytes. In addition, only p65-Thr435 phosphorylation was increased in endothelial cells accompanied by SMI-71 expression (an endothelial barrier antigen). Neutralization of TNF-α by soluble TNF p55 receptor (sTNFp55R) infusion attenuated SE-induced vasogenic edema and neuronal damages via inhibition of p65-Thr435 phosphorylation in endothelial cells. Furthermore, sTNFp55R infusion reduced SE-induced neutrophil infiltration in the PC.</p> <p>Conclusion</p> <p>These findings suggest that impairments of endothelial cell functions via TNF-α-mediated p65-Thr 485 NF-κB phosphorylation may be involved in SE-induced vasogenic edema. Subsequently, vasogenic edema results in extensive neutrophil infiltration and neuronal-astroglial loss.</p
    corecore