26 research outputs found

    Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors

    Get PDF
    © 2016 The Author(s) Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs) are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs) PDGFRα and FGFR1 are coactivated in MRT cells and that dual blockade of these receptors has synergistic efficacy. Inhibitor combinations targeting both receptors and the dual inhibitor ponatinib suppress the AKT and ERK1/2 pathways leading to apoptosis. MRT cells that have acquired resistance to the PDGFRα inhibitor pazopanib are susceptible to FGFR inhibitors. We show that PDGFRα levels are regulated by SMARCB1 expression, and assessment of clinical specimens documents the expression of both PDGFRα and FGFR1 in rhabdoid tumor patients. Our findings support a therapeutic approach in cancers with SWI/SNF deficiencies by exploiting RTK coactivation dependencies

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study

    Get PDF
    BACKGROUND: Mutations altering BLM function are associated with highly elevated cancer susceptibility (Bloom syndrome). Thus, genetic variants of BLM and proteins that form complexes with BLM, such as TOP3A and RMI1, might affect cancer risk as well. METHODS: In this study we have studied 26 tagged single nucleotide polymorphisms (tagSNPs) in RMI1, TOP3A, and BLM and their associations with cancer risk in acute myeloid leukemia/myelodysplatic syndromes (AML/MDS; N = 152), malignant melanoma (N = 170), and bladder cancer (N = 61). Two population-based control groups were used (N = 119 and N = 156). RESULTS: Based on consistency in effect estimates for the three cancer forms and similar allelic frequencies of the variant alleles in the control groups, two SNPs in TOP3A (rs1563634 and rs12945597) and two SNPs in BLM (rs401549 and rs2532105) were selected for analysis in breast cancer cases (N = 200) and a control group recruited from spouses of cancer patients (N = 131). The rs12945597 in TOP3A and rs2532105 in BLM showed increased risk for breast cancer. We then combined all cases (N = 584) and controls (N = 406) respectively and found significantly increased risk for variant carriers of rs1563634 A/G (AG carriers OR = 1.7 [95%CI 1.1-2.6], AA carriers OR = 1.8 [1.2-2.8]), rs12945597 G/A (GA carriers OR = 1.5 [1.1-1.9], AA carriers OR = 1.6 [1.0-2.5]), and rs2532105 C/T (CT+TT carriers OR = 1.8 [1.4-2.5]). Gene-gene interaction analysis suggested an additive effect of carrying more than one risk allele. For the variants of TOP3A, the risk increment was more pronounced for older carriers. CONCLUSION: These results further support a role of low-penetrance genes involved in BLM-associated homologous recombination for cancer risk

    Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy

    Get PDF
    Our knowledge of actinide chemical bonds lags far behind our understanding of the bonding regimes of any other series of elements. This is a major issue given the technological as well as fundamental importance of f-block elements. Some key chemical differences between actinides and lanthanides—and between different actinides—can be ascribed to minor differences in covalency, that is, the degree to which electrons are shared between the f-block element and coordinated ligands. Yet there are almost no direct measures of such covalency for actinides. Here we report the first pulsed electron paramagnetic resonance spectra of actinide compounds. We apply the hyperfine sublevel correlation technique to quantify the electron-spin density at ligand nuclei (via the weak hyperfine interactions) in molecular thorium(III) and uranium(III) species and therefore the extent of covalency. Such information will be important in developing our understanding of the chemical bonding, and therefore the reactivity, of actinides

    Sensitised luminescence in lanthanide containing arrays and d-f hybrids.

    No full text
    Sensitised luminescence from lanthanide complexes offers many potential advantages in imaging and assay, particularly when coupled with time-gating protocols that can be used to gate out background signal. In this perspective, we discuss the routes by which lanthanide arrays and polymetallic d-f hybrids can be prepared by conventional synthesis and self-assembly, and discuss and evaluate the possibilities for exploiting and evaluating the intermediates in the sensitisation process, with particular emphasis on the mechanisms of energy transfer

    Synthesis and spectroscopic studies on azo-dye derivatives of polymetallic lanthanide complexes: using diazotization to link metal complexes together.

    No full text
    Heteronuclear tetrametallic lanthanide complexes have been synthesized from stable complexes by diazotization and azo-compound formation. Luminescence spectroscopy has been used to show that the complexes used as building blocks are stable under the reaction conditions
    corecore